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ABSTRACT 
With advances in physiological sensors, we are able to 
understand people’s physiological status and recognize 
stress to provide beneficial services. Despite the great 
potential in physiological stress recognition, there are some 
critical issues that need to be addressed such as the 
sensitivity and variability of physiology to many factors 
other than stress (e.g., physical activity). To resolve these 
issues, in this paper, we focus on the understanding of 
physiological responses to both stressor and physical 
activity and perform stress recognition, particularly in 
situations having multiple stimuli: physical activity and 
stressors. We construct stress models that correspond to 
individual situations, and we validate our stress modeling in 
the presence of physical activity. Analysis of our 
experiments provides an understanding on how 
physiological responses change with different stressors and 
how physical activity confounds stress recognition with 
physiological responses. In both objective and subjective 
settings, the accuracy of stress recognition drops by more 
than 14% when physical activity is performed. However, by 
modularizing stress models with respect to physical activity, 
we can recognize stress with accuracies of 82% (objective 
stress) and 87% (subjective stress), achieving more than a 
5-10% improvement from approaches that do not take 
physical activity into account. 
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INTRODUCTION 
Due to an overabundance of stress in our modern lives, 
being stressed is now regarded as a negative experience 
when failing to adequately respond to mental, emotional, or 
physical demands [1, 2]. Thus, stress is often produced 
when people are exposed to the demands and pressures 
from physical or mental activities in their daily life, or 

forced by their self-imposed demands, obligations and self-
criticism [3,4]. Since stress can lead to significant health 
problems such as headaches, trouble sleeping and fatigue, it 
is necessary to properly understand and measure stress in 
the natural environment [5]. In behavioral science, people 
commonly use self-reports that periodically collect 
instantaneous measurements of perceived stress, but it is 
practically impossible to detect stress in a timely manner 
with the self-reporting approach due to its imposed burden 
and obtrusiveness. In clinical settings, cognitive and 
physical assessments are used such as the Mini-Mental state 
Examination, the Mental Status Questionnaire and physical 
tests of walking speed, grip strength and button pressing 
speed, but they are not designed for continuous stress 
recognition [6].  

Stress recognition has been actively investigated in the area 
of affective computing based on various sensing systems 
and inference techniques. Outward expressions, such as 
speech, facial expression and behaviors, have been used to 
recognize emotion or stress, but they are still limited in 
their ability to correctly detect a person’s affect in natural 
environments. Instead, psychophysiological measurements 
are now perceived as having the most potential for 
detecting changes in stress level since there are an 
increasing availability of sensors that can conveniently 
capture states of a human and his surrounding environment 
[6,7]. Since physiology responds to stress (e.g., changes in 
stress hormone levels may lead to changes in heart rate, 
blood pressure, pupil dilation, and galvanic skin responses), 
the main task of stress recognition based on physiology is to 
understand the relationship between a person’s 
psychophysiological responses and stress. It would be 
especially beneficial if some automated methods or 
algorithms existed that could recognize such states [8]. 
Moreover, the recent development of advanced 
physiological sensors makes it more practical to automate 
stress recognition, since they could provide an objective, 
continuous, unobtrusive and passive way to capture 
physiological responses in natural environments [5]. 

Despite the great potential in stress recognition, there are 
some practical issues in exploiting physiological responses. 
First, the physiological system reacts not only to changes in 
stress, but also to many other factors such as changes in 
physical or mental conditions; thus, a physiological change 
does not necessarily imply a stress change [5,9]. It often 
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responds to physical activity demands, physical discomfort, 
noise, changes in posture, lighting conditions and mental 
task demand and emotional stress. In fact, researchers have 
exploited physiological responses in recognizing physical 
activity [9]. Second, sensing platforms for detecting 
physiological signals have limitations [10]. These platforms 
are typically sensitive to noise, can miss sensor readings, 
and have issues with wearability and battery limits. Third, 
stress has wide variations in its physiological expression. 
For example, physical stress makes a sympathetic nervous 
response dominant but an adrenal response is dominant 
during cognitive stress. Finally, physiological responses to 
stress and physical activity are very individual [4,11]. 
People sometimes express different physiological responses 
to some degree for the same stressor, which indicates the 
necessity of personalizing affect models. 

Motivated by these challenges, this paper presents an 
understanding of physiological changes, particularly in 
situations having multiple stimuli that may complexly 
affect people’s physiological system. Three different 
stressors are administered to participants (mental arithmetic 
[12], loud sounds [13] and cold water pressor [14]) while 
three activities (sitting, walking, and bicycling) having 
different levels of intensity are performed. A variety of 
physiological channels, including respiration, 
electrocardiogram, skin conductivity and body temperature, 
are captured by two representative commercial sensors, and 
various data analysis methods of feature extraction and 
classification are used to understand the changes in 
physiological responses and recognize stress in the presence 
of physical activities. In order to detect stress even during 
physical activity, we apply an approach that consists of 
multiple stress models, each of which classifies stress 
during a specific activity.  

In the following section, we provide an overview of related 
research on stress, physiological sensors, and approaches 
for performing stress recognition. We then provide details 
about our stress data collection with various stressors in the 
presence of physical activity. We present a framework to 
analyze physiological signals and our stress recognition 
method. The next section provides experimental results 
including an analysis of physiological features for each 
stimulus including stressors and physical activities and for 
stress recognition performance. We then discuss limitations 
of our work and remaining challenges, and conclude with 
perspectives related to future work. 

RELATED WORK 

Physiological stress recognition 
When a situation is appraised as threatening and the 
individual is unable to cope with an appropriate reaction, 
emotional and physiological responses, often called stress, 
are stimulated. Stress has been investigated as a dimension 
of negative affect in psychological and medical research 
[4,5]. Since stress can lead to significant health problems, 
the understanding and assessment of stress is a crucial issue; 
stress must be detected in a timely manner and individuals 

must receive appropriate treatment. Over the past two 
decades, several markers of stress have been identified [5], 
where physiological measurements are now considered as 
the most common tool for detecting changes in stress level 
although facial expressions and keyboard-typing patterns 
have also been used [6,15].  

In contrast to psychology where researchers often aim to 
achieve a pure understanding of physiological responses to 
stress, recent studies are more focused on the automation of 
stress detection and its application to real-life situations 
[5,8,15]. Healey and Picard used four types of physiological 
sensors including an electrocardiogram (ECG), 
eletromyogram (EMG), skin conductivity (also known as 
galvanic skin response (GSR)), and respiration. They 
collected physiological data during real-world driving tasks 
to measure drivers’ stress levels [7]. Nasoz et al. designed a 
multi-modal intelligent car interface with negative affective 
states such as panic/fear, frustration/anger and 
boredom/fatigue [8]. To identify these states, they used 
physiological responses such as skin conductance, heart 
activity, respiration, muscle activity, and finger pressure.  

In order to recognize stress and fatigue, Liao et al. proposed 
a unifying framework using a dynamic probabilistic 
decision-theoretic model, which included affective state 
recognition, active sensory action selection and user 
assistance [3]. They used four different types of inputs: 
physiological responses, physical appearance features, user 
performance and behavioral data, and focused on 
constructing an optimal feature set to improve the 
recognition performance instead of using all available 
features. Sierra et al. used a fuzzy logic approach that 
models galvanic skin response and heart rate as a result of 
stress induced by hyperventilation and a talk preparation 
task [15]. Plarre et al. designed a mobile platform that 
continuously captures various physiological channels to 
infer stress in the natural environment [5]. Although they 
applied a systematic approach to map a physiological 
response to perceived stress, their focus was on the 
development and evaluation of their sensing platform rather 
than on providing a deeper understanding of the 
relationship between physiological responses and stress or 
other factors like physical activity. 

Affective computing with physiological responses 
After Picard coined the term affective computing in the mid 
1990’s, Picard and Healey worked on the basics of a 
computational approach for analyzing affective 
physiological state [16]. Various features and machine 
learning techniques were applied to discover promising 
features and to model affect in a variety of situations 
[16,17]. Similar to other pattern recognition tasks based on 
sensory signals, this approach has several basic steps for 
exploiting physiological responses in modeling affect: 1) 
selecting specific physiological sensors and capturing 
signals, 2) extracting informative features from the raw 
sensory channels, 3) modeling the relationship between 
target affects and the extracted features.  
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As mentioned above, it has become much easier to collect a 
variety of physiological responses due to advances in sensor 
technology. Each physiological channel has its own distinct 
strengths and limitations in terms of accuracy, resolution or 
sampling rate, sensor’s wearability, and power consumption. 
Since raw sensory signals are often not very useful for 
directly modeling affect, affect modeling is usually pursued 
with feature variables extracted from these raw signals. 
From the means and standard deviations of the raw signals 
to the dominant frequency and power of the raw signals in 
the frequency domain, a broad spectrum of features have 
already been introduced in modeling affect [16,17]. For 
certain physiological responses like ECG, a sophisticated 
algorithm (e.g., QRS detection algorithm) has developed to 
extract features (e.g., heart rate or RR interval) widely used 
in biomedical engineering [17,18]. The choice of features is 
a fundamental and highly problem-dependent task in the 
development of affect models, being conducted either using 
automated feature selection or expert knowledge [3].  

Since even distinguishing features do not have sufficient 
capability or information required to model affect, 
researchers apply machine learning techniques to discover 
the complex relationship or recognize target affective states. 
The more a sensor or a user is exposed to the natural 
environment, the more uncertainty and complexity are 
introduced, making it impossible to address with manual 
approaches. A variety of machine learning methods can be 
applied to the affect modeling problem, such as k-nearest 
neighbors [8,11,16], linear discriminant analysis 
[7,11,17,18], multilayer perceptron [11], support vector 
machines [19], fuzzy logic [15], Bayesian networks [8], 
dynamic Bayesian networks [3]. 

Although much work has introduced advanced techniques 
and systems that accurately model affect and detect stress, 
we still need to consider issues about how to apply stress 
recognition in natural environments. Physiological 
responses may often be activated by other factors on the 
body such as speaking and physical activity. To use stress 
models with physiological responses in practice, we must 
be able to correctly detect stress even during other activities 
that affect one’s physiology. We are motivated by the fact 
that few studies have studied the impact of such real-world 
factors, and the necessity to pursue work addressing the 
effect of physical activity, as it is a daily common event, on 
physiological responses and stress recognition. 

DATA COLLECTION 
We collected physiological data from 20 participants while 
they performed physical activities. Here, we describe our 
data collection method. 

Materials and setup 
The data collection was performed in a closed laboratory 
environment under controlled temperature. A number of 
physiological signals were recorded using two commercial 
sensors, the BioHarness BT and the SenseWear armband 
(more detail available in the next section), and an Android 
smartphone that connects to the BioHarness BT via 

Bluetooth for real-time monitoring of raw ECG signals (to 
verify the measurements were of high quality). The 
placement of the two sensors is shown in Fig. 1. 
Participants used a treadmill and a stationary bike to 
perform physical activity. 

 
Figure 1. Sensor platform and exercise equipment 

Participants 
We recruited 20 participants (10 females and 10 males), 
mainly students from Carnegie Mellon University, ranging 
in age from 18 to 38 years old (average of 26.3, std. dev. of 
5.3). The participants were asked to perform our data 
collection tasks on 4 different days, and reimbursed $30 for 
each day. 19 participants completed all four sessions. 

Procedure 
When a participant arrived at our laboratory, an 
experimenter took him/her to a meeting room to explain the 
data collection procedure. The experimenter then helped the 
participant wear the two sensors and verified the quality of 
the output signals, before initiating a data collection session.  

As shown in Fig. 2, the data collection starts and ends with 
a baseline recording (10 and 5 minutes each), and consists 
of three sub-sessions of physical activity with different 
intensities: sitting, walking (around 2 mph) and bicycling 
(around 16 mph). Following the ACSM (American College 
of Sports Medicine)’s guideline, the treadmill speed was 
chosen to match the speed that causes a subject’s heart rate 
to be over 50% of the maximal heart rate, in the warm-up 
period. Similarly, for bicycling speed, 60% of the maximal 
heart rate was kept as minimum. Each sub-session was 
divided into 4 tasks, 3 with stressors and 1 without any 
stressor. In order to provide a variety of stressful situations, 
we presented three different types of stressors [used in 
12,13,14] to the participant, including 1) a mental 
arithmetic problem (denote math) as a mental stressor 
where the participant needs to repeatedly subtract a two-
digit number from a 4-digit number (e.g., keep subtracting 
13 from 2,081), 2) a cold water pressor (denote cold) as a 
physical stressor where the participant keeps his/her hand in 
cold water (4°C), and 3) noisy sound (denote sound) as 
another mental stressor where a number of random loud 
sounds (e.g., screaming and snoring) are presented.  

Each task was administered for 3 minutes, followed by a 
short break (2 minutes) during which participants assessed 
their own stress levels (5-point Likert scale from 1: no 
stress and 5: most stressed) and filled out the NASA-TLX 
questionnaire [20]. The NASA-TLX method was designed 
to assess a subject’s overall workload using a weighted 
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multi-dimensional rating for six subscales: Mental 
Demands, Physical Demands, Temporal Demands, Own 
Performance, Effort and Frustration. We exploit the NASA-
TLX method to objectively evaluate the cognitive load 
induced by our three stressors. While this does not directly 
assess stress, it is intended to complement the self-
assessment of stress. After both walking and bicycling, 
participants take a 10 minute long break to recover. The 3 
physical activities are performed in a different order on 
each visit, and the stressors are presented in a counter-
balanced order based on the Latin square method. 

 
Figure 2. Overview of data collection 

A FRAMEWORK FOR PHYSIOLOGICAL ANALYSIS 
The basic structure for analyzing physiological responses 
and recognizing stress is illustrated in Fig. 3. Two popular 
sensors are used to continuously capture a variety of 
physiological responses, and the streaming signals are 
filtered and segmented with a constant frequency. After the 
preprocessing stage, we extract meaningful features from 
each segment composed of raw biosignals. In stress 
recognition, we apply two popular methods: naïve Bayes 
classifier (NB) and Bayesian networks (BN), where we 
discretize numeric variables into a nominal form before 
using them. Different feature sets are used in building stress 
recognition models, since not all physiological features are 
informative. 

 
Figure 3. Overview of basic processes in physiological analysis 

Feature extraction 
We use the Bioharness BT and the SenseWear armband to 
capture the physiological responses as shown in Table 1. 
The BioHarness BT (Zephyr Technology) is a chest-worn 
band with embedded sensors measuring 3D acceleration, 
breathing, ECG and skin temperature. The SenseWear 
armband (BodyMedia) is an armband sensing platform that 
senses 2-D acceleration, heat flux, galvanic skin response, 
skin temperature and near-body ambient temperature.  

All sensory signals from the two sensors are segmented into 
final samples for a given window (30 seconds in this paper) 
in the preprocessing stage, and a number of features are 
extracted from the signals of each segment, by using 
conventional statistics in time series and geometric analysis 
[16,17]. First, some basic statistics including average, 
standard deviation and median values are calculated for 
every physiological stream with low sampling frequencies 
in Table 1. Second, some features are extracted from raw 
ECG and breathing signals based on medical and 
physiological research literature [17,21]. For the raw ECG 
signals, we detect the QRS complex (representing 
depolarization of the ventricles) and its interval in the ECG 
waveform, such as the RR interval (RRI: interval between 
ventricular depolarization), and calculate four values from 
the Poincare geometry of the RR intervals. Poincare 
geometry quantifies self-similarity and fluctuations in 
periodic features like RR intervals. The mean and standard 
deviations of the distances of each RR interval and the next 
interval to two lines such as y=x and y=-x+2*RRM (the 
mean of all RR intervals against the next interval) are 
calculated as follows: 

Channels Physiological responses / movement features Frequency Sensor 
Electrocardiogram Heart rate, ECG amplitude, ECG noise 1 Hz. Bioharness 

BT Respiration Breathing rate, breathing wave amplitude 
Temperature Skin temperature 
Acceleration XYZ acceleration minimums and peaks, posture, vector magnitude, peak 

acceleration 
Respiration Raw signal of breathing 18 Hz 
Electrocardiogram HR RR value 
Electrocardiogram Raw signal of ECG 250 Hz 
Acceleration XY acceleration peaks, XY acceleration average, XY acceleration MAD (Mean 

Absolute Difference) 
0.033 Hz SenseWear 

Armband 
Temperature Skin temperature, near-body temperature 
Electrodermal activity GSR (Galvanic skin conductance) 
Heat Heat flux 
Acceleration Step counter, lying down, sleep, physical activity, energy expenditure, sedentary, 

moderate, vigorous, very vigorous, METs (Metabolic Equivalent Tasks) 
0.017 Hz 

Table 1. Physiological responses measured in this study 
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Additionally, the heart rate and breathing rate are calculated 
again from the raw sensory signals although the sensor also 
provides this information. The volume of inhalation and 
exhalation is analyzed from the raw breathing signal. (Note 
that the raw breathing signal basically reflects the changes 
in pressure on the sensor, where we use the value indirectly 
as a measurement for the volume of breathing.) 

All movement features such as acceleration peaks and 
METs (metabolic equivalents), which are widely used for 
activity recognition, are excluded from our analysis of 
stress recognition since they are specifically sensitive to 
physical activity. Instead, 42 features obtained from the 
physiological responses are used in this paper. A group of 
features are calculated from the measurements at a low 
sampling frequency, including average, standard deviation, 
and median of heart rate (F1~3), of breathing rate (F4~6), 
of skin temperature (F7~9), of breathing wave amplitude 
(F10~12), of ECG amplitude (F13~15), and of ECG noise 
(F16~18). Five features are calculated by analyzing the 
QRS complex and the RR intervals (F19~F23). We 
calculate features from the raw signals of the measurements 
at a relatively high sampling frequency, including average 
and median of derived heart rate (F24, F25), average and 
median of RR intervals derived from raw ECG signals (F26, 
F27), breathing rate derived from raw breath signals (F28), 
5 statistics (maximum, minimum, median, average, and 
standard deviation) each for the maximum volume of 
inhalation and exhalation (F29~F38). Also, the Armband 
provides heat flux (F39), skin temperature (F40), near-body 
temperature (F41), and GSR (F42).  

Stress recognition during physical activity 
For the given segments of extracted features, we formulate 
a basic classification problem where each segment of data 
corresponds to a binary state: stress or no-stress. In order to 
model the complex relationship between physiological 
features and stress, we use two probabilistic techniques: the 
naïve Bayes classifier (NB) and Bayesian networks (BNs). 
NB is a simple probabilistic model based on Bayes' theorem 
and independence assumptions of features. Despite its use 
of over-simplified assumptions, it often exhibits good 

performance on many real-world problems and the resulting 
model can be easily interpreted and understood. As a 
powerful technique that handles uncertainty in a complex 
domain, BNs probabilistically model a set of joint 
probability distributions over variables. While they are also 
based on Bayes’ theorem, BN is not limited in the 
independence assumption and are capable of representing 
the complex relationship among variables as a directed 
acyclic graph, whose nodes correspond to the variables, and 
arcs to their causal dependency [22]. The probabilistic 
models in our implementation are based on the SMILE 
reasoning engine for graphical probabilistic models, from 
the Decision Systems Laboratory, at the University of 
Pittsburgh (http://dsl.sis.pitt.edu). For BN, we first learn the 
structure with the K2 algorithm and then apply the 
expectation-maximization (EM) algorithm to learn the 
parameters. 

All the continuous variables are discretized into five states 
{verylow, low, medium, high, veryhigh} where each state 
has almost the same number of samples as the others, 
before being used in the probabilistic models. When 
building a model that recognizes stress, we optimize the 
model by selecting informative features for the target 
classification problem. Although we include a number of 
physiological features already used in other literature, no 
preliminary or “expert” selection was applied to clarify 
which physiological features are correlated with stressors or 
physical activity.  

In order to recognize physiological stress during physical 
activity (or certain levels of intensity), we extend the basic 
framework (see Fig. 3) as a model (called M1) that takes 
physical activity into account in stress recognition as shown 
in Fig. 4. Instead of building a general model (called M2) 
that recognizes stress in all situations, we build multiple 
stress models (called M3), each of which is trained with 
samples collected when the corresponding physical activity 
is performed. M3s are responsible for managing the 
influences caused by their corresponding physical activity. 
This approach first classifies physical activity with 
movement features and then applies the corresponding 
stress recognition model by using physiological features.  

 
Figure 4. Overview of the physiological stress recognition 

during physical activity 

ANALYSIS & EVALUATION 

Evaluation schemes 
In order to examine which physiological features are related 
to stressors or affected by physical activities, we first 
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analyze the features using an independent two-sample t-test 
for each stimulus. Secondly, we build the stress model 
based on the following evaluation schemes. Three 
evaluation schemes are proposed to identify the complex 
relationship among stressors and physical activities with 
respect to physiological features.  

1) Physical activity (sitting vs. walking vs. bicycling): 
use samples obtained from three physical activities 
having different intensity, and extract the 
physiological features impacted by physical activity.  

2) Objective stress in physical activity: use samples 
collected when participants are involved in each of 
three physical activities (sitting, walking and 
bicycling), and extract promising features showing 
significant changes to stress. Here, the three 
stressors are regarded as one class, stress, against 
no-stress without any stressor.  

3) Subjective stress in physical activity: same as 
objective stress, but instead of using the presence of 
a stressor to indicate stress, we use the participant’s 
subjective rating (5-point Likert scale from 1: no 
stress and 5: most stressed) with each of the 
stressors, and no stressor. Any rating except 1 (=no 
stress) is regarded as stress. 

For the evaluation, we analyzed the data that includes a 
period of 2 minutes before the end of each task, and the 
data was segmented with a window of 30 seconds. The 
recognition performance of stress models was evaluated 
using five-fold cross validation, where the data were 
randomly divided into five parts with four parts used for 
training and one part for testing. This process was repeated 
five times. In the following sections on stress modeling, we 
report the average performance over five folds. 

Physiological change by stressors and physical activity 
To examine the change in extracted features to each stressor, 
we analyzed their mean difference across our user 
population using an independent two-sample t-test. Table 2 
shows features that can distinguish our two conditions (no-
stressor vs. stressor) for different physical activities, at a 
level of statistical significance (p<0.01).  

 Sitting Walking Bicycling 

Math F4,F6,F24,F25, 
F30,F33,F34,F37 

F1,F3,F4,F6,F11,
F24,F25,F28,F29,
F30,F33,F34,F38 

F4,F6,F25, 
F28,F30,F33,

F34,F38 

Sound 
F2,F4,F6,F11, 

F17,F29,F33,F35,
F37,F38 

- F4,F6,F11, 
F28,F33 

Cold 
F4,F6,F8,F10,F11
,F28,F29,F30,F33
,F35,F36,F37,F38 

F2,F4,F5,F6,F8, 
F11,F33,F35,F38 F11,F33,F38 

Table 2. Discriminating features for the stressors 

In general, math as a mental stressor caused a certain 
degree of change in physiological features regardless of 
physical activity. Sound did not affect physiological 
responses as much as the other stressors, and decreased its 
effect when physical activity was performed. Among the 

three stressors, cold had the strongest influence, causing 
significant changes in many physiological features when no 
physical activity was performed. However, fewer features 
had significant changes for cold during walking or 
bicycling. 

In this study, the values of several features such as F4 
(average of breathing rate), F33 and F38 (standard 
deviation of maximum volume of inhalation and exhalation) 
were significantly changed by stressors across our user 
population. As shown in Fig. 5(a), although the average 
breathing rate (F4) increased in the presence of physical 
activity from 18 to 25 (times/min), it decreased when 
stressors were administered, especially for math and cold. 
However, the breathing rate increased for sound when 
people were sitting and bicycling. Although the three 
stressors all induced stress, they resulted in different 
physiological responses due to their distinct effects on the 
human physiological system.  

 
Figure 5. Change of physiological responses by stressors and 

physical activities (white and grey boxes represent tasks 
without/with stressors, respectively, and three horizontal lines 

of boxes: 1st/2nd/3rd quartiles, X: mean value) 

Heart rate has been investigated as a stress indicator in 
previous research [7], but it is also very sensitive to 
physical activity. In our study, we saw no significant 
difference in the heart rate because of the influence of 
physical activity, between situations with and without 
stressors, over our entire population. However, when just 
examining the results from math, the heart rate for several 
subjects did change (F24, F25). Skin temperature was 
somewhat sensitive to cold, with its standard deviation (F8) 
increasing with cold (Fig. 5(b)). However, the high 
intensity physical activity of bicycling, also increased the 
standard deviation. Many breathing-related features 
changed over the population in the presence of stressors, 
especially math and cold, e.g., the standard deviation of 
maximum volume of inhalation (F33) increased with these 
stressors despite the presence of physical activity (Fig. 
5(c)(d)).  

In addition to the general changes over population, 
physiological responses are subjective and vary by 
participant. Fig. 6 shows the distribution of average 
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breathing rate (F4) for two subjects, illustrating the 
difference across individuals. With respect to physical 
activity, S7 did not change his breathing rate much, but S12 
did. When S7 performs a physical activity, the breathing 
rate decreased significantly only with math. On the other 
hand, the breathing rate decreased for cold, whether or not 
S12 performs physical activity or not. The varied nature of 
the physiological responses is the main reason why 
personalized stress models are required. 

 
Figure 6. Example of individual difference 

As opposed to the stressors which had a lesser influence on 
physiological responses, physical activity was dominant in 
causing changes for almost all features. This makes the 
recognition of stress in the presence of physical activity 
much more difficult. Table 3 presents the number of 
features that have significant differences (p<0.01) for each 
stressor and physical activity pair (averaged across all 
users). As stressors, math and cold had the largest impact 
on physiological responses, while physical activity affects 
the ability to discriminate between stressors across our user 
population.  

p<0.01 Sitting Walking Bicycling 
Math 4.3 5.1 4.1 
Sound 1.5 0.1 1.2 
Cold 4.7 3.5 1.6 
Avg. 3.5 2.9 2.3 

Table 3. Average number of physiological features that show 
discriminability to stressors with physical activity for each 

participant 

In addition to the analysis on physiological changes by each 
stressor and physical activity across our entire population, 
we measured the information gain [23] of features from 
each participant to evaluate their robustness and usefulness 
for the personalized stress recognition in the presence of 
physical activity. We noted how often each was ranked in 
the top 10 among 42 features for three evaluation schemes 

as shown in Fig. 7. Influencing a broad channel of 
physiology such as ECG, skin temperature and breath, 
physical activity caused changes in many features, but it 
was relatively less sensitive for some features such as F39 
(heat_flux) and F42 (GSR). With respect to objective stress, 
breath-related features showed higher information gain such 
as F4, F6, F33 and F36, in addition to F42 and F7 (average 
of skin temperature). Although few features overlapped 
between the two schemes of physical activity and objective 
stress, most features still had an effect on both.  

 
Figure 7. Information gain-based feature analysis for three 

evaluation schemes. The vertical axis represents the number of 
participants with the given feature in the top 10. 

In contrast with objective stress, subjective stress was more 
related with physical activity since the participants got 
stressed not only from the three explicit stressors but 
sometimes also from some physical activities like bicycling. 
There are many ECG-related features (F1, F3, F19, F24, 
and F27) that have high information gain for both physical 
activity and subjective stress. However, some features (F39 
and F42), that had high information gain with respect to 
objective stress, also obtained high information gain with 
subjective stress.  

Understanding of subjective stress rating 
We also examined participants’ subjective ratings of stress, 
in response to stressors and physical activity. We validated 
our subjective rating with the NASA TLX, and found 
strong agreement between the two. Fig. 8 shows the 
distribution of subjective rates and the scores obtained from 
the NASA TLX, where the values vary with both stressors 
and physical activity.  

Based on the subjective ratings, most subjects reacted to the 
three stressors, where stress was induced in decreasing 
order by cold, math, and sound, similar to the result from 
the changes in physiological responses. Physical activity 
also influenced the ratings for stress, e.g., less stress was 
induced by sound when an intense physical activity was 
performed. In general, participants rated 68% of the 48 
tasks (4 days × 3 physical activities × (3 stressors + no 
stressor)) as stressful (ratings˃1). Three participants were 
exception with S01 and S09 only reporting stress for 18% 
of tasks and S18 reporting stress for 98% of tasks.  
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Figure 8. Analysis of subjective rates with the NASA TLX 

Recognition of stressors in physical activity 
In order to evaluate the applicability of stress models across 
situations with/without physical activity, we first built the 
model for situations with no physical activity (M3 for 
sitting) and applied it to other situations as shown in Fig. 9. 
It can model stress in the sedentary setting but, as expected, 
failed to achieve similar performance in the presence of 
physical activity, resulting in an accuracy drop of 14%. 

 
Figure 9. Effect of physical activity on stress recognition 

Using our first evaluation approach, we evaluated our 
recognition of physical activity using movement features 
(average, standard deviation and median values were 
calculated from acceleration channels in Table 1) as shown 
in Fig. 10. Although there are individual differences, both 
NB and BN achieved high accuracy, around 97% on 
average.  

Using our second evaluation approach, we measured the 
performance of objective stress recognition, between M1 
(the stress model that uses physical activity to recognize 
stress) and M2 (the stress model that does not use physical 
activity to recognize stress) as shown in Fig. 11.  

 
Figure 10. Physical activity recognition 

 
Figure 11. Objective stress recognition  

On average, M1 results in accuracies of 79.8% (NB),79% 
(BN) and 82.1% (DY, in which NB or BN is dynamically 
selected based on their validation accuracy on training 
samples) which are significantly better (t=7.2, p<0.001; 
t=2.3, p<0.02; and t=4.9, p<0.001) than M2 which has 
accuracies of 71.8%, 76% and 76.9%, respectively. 
Maximum improvements of 13.6% (NB), 12.9% (BN) and 
18% (DY) were obtained for S04, S09 and S01 when we 
considered physical activity in modeling stress. Inaccurate 
recognition of physical activity did not degrade the overall 
performance of stress recognition. 

Using our third evaluation approach, we measured the 
performance of subjective stress recognition, as shown in 
Fig. 12. M1 has accuracies of 86.4% (NB), 87.4% (BN) and 
87.8% (DY) which are 4.3%, 9.4% and 4.1% higher than 
for M2 (t=7.4, p<0.001; t=4.5, p<0.001; t=5.1, p<0.001). 
The maximum improvements are 13% (S11 with NB), 19% 
(S13 with BN) and 12% (S05 with DY).  
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Figure 12. Subjective stress recognition 

Subject M3 M1 M2 Sitting Walking Bicycling 
S01 95.0% 93.8% 95.2% 94.7% 85.7% 
S02 85.8% 84.6% 98.5% 89.5% 83.7% 
S03 72.1% 84.2% 100.0% 85.4% 82.8% 
S04 70.1% 81.0% 88.8% 80.6% 75.8% 
S05 95.6% 90.4% 96.9% 93.7% 81.5% 
S06 87.7% 82.2% 96.2% 87.7% 83.4% 
S07 76.5% 95.3% 100.0% 90.6% 90.1% 
S08 88.8% 79.7% 87.7% 85.4% 80.7% 
S09 91.8% 91.8% 86.1% 89.3% 90.7% 
S10 81.3% 84.5% 90.6% 85.4% 85.4% 
S11 78.2% 88.7% 80.3% 82.6% 72.1% 
S12 79.2% 85.3% 100.0% 87.1% 83.3% 
S13 77.7% 93.0% 100.0% 90.4% 88.7% 
S14 79.0% 89.4% 84.2% 83.6% 80.5% 
S15 84.5% 87.7% 96.9% 89.1% 85.4% 
S16 64.0% 89.0% 96.9% 82.8% 80.8% 
S17 88.3% 84.4% 93.8% 88.3% 84.1% 
S18 95.2% 100.0% 100.0% 98.4% 97.4% 
S19 82.8% 78.1% 93.6% 83.8% 77.6% 

Table 4.Subjective stress recognition during physical activity 
(dark gray cell: M1 < M2, light gray cell: M3 < M2, note that 

M1 is better than M2 in all other cases) 

Table 4 presents the result of subjective stress recognition 
(DY) for each physical activity. With a 97% accurate 
physical activity recognizer, M1 performs better than M2 
for almost all users (S09 is an exception). This validates the 
hypothesis, that, in general, it is better to build stress 
models separately for each physical activity since the 
variation in physiological changes increases with physical 
activity.  

The predictive ability of M1 is dependent on the 
performance of M3s (the stress models for recognizing 

stress in the presence of each physical activity) built for 
each physical activity. If any specific stress recognition 
model M3 performs poorly in a certain situation, a more 
accurate general stress recognizer may not be achievable. In 
the case of S09 (in dark gray cells), M3s had much lower 
accuracy for bicycling compared to M2. Because of this, 
M1 was inferior to M2 although has it has relatively high 
accuracy for the other activities. On the other hand, for 
some participants (e.g., S03 and S04), M1 produces better 
overall results even though it has low accuracy in particular 
situations (light gray cells in Table 4). 

Discussion 
As already stated, physiological responses are highly 
subjective and sensitive to various factors such as mental or 
physical condition, activity and environment [7]. For 
instance, in addition to physical activity and stress, weather 
or the time of day may cause great variations in the 
physiological system. For accurate detection of stress, a 
model of the complex relationship that takes into account 
these various factors along with day-to-day and individual 
differences [16], is required. 

Besides the fundamental issue of recognition, there are 
technical issues in physiological stress modeling that need 
exploration, such as 1) gathering high quality data, 2) 
developing or applying sophisticated techniques, and 3) 
evaluating systems in the real environment.  

Due to physical activity that requires participants to move, 
the body-worn sensors may have noisy signals, or even 
have no signal as the sensors lose contact with the body. A 
mechanism to manage the data quality is required in such 
settings – we used time-consuming manual effort. It is also 
important to associate the sensory data with real stress, yet 
it is often difficult to obtain ground truth stress labels [24].  

Although we applied probabilistic methods to stress 
recognition in this study, the performance could still be 
improved with other machine learning techniques like 
support vector machines. Also, a sophisticated technique 
like ensembling could be useful for modeling the complex 
relationship in sensory data with multiple features to 
improve reliability and accuracy [25]. 

Finally, we need to extend our protocol of data collection to 
natural environments [5,26]. As an initial stage of research 
attempting a systematic investigation into the structure of 
physiological stress relating to physical activity, we scoped 
our experimental design. The type and number of stressors 
and physical activities in the present data were inevitably 
restricted, as well as data collection being performed in a 
controlled setting. The results reported in this paper should 
be generalized by verifying our approach in a longitudinal 
field study that does not restrict any data collection process 
in natural environments. To what extent context 
independence in stress models can be found under varying 
stimulus conditions in natural environments will be an 
important topic for future research. 
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CONCLUSION 
In this paper, we explored the influence of physical activity, 
as an important confound occurring commonly in real 
situations, on stress recognition with physiological 
responses, and recognized stress by modularizing stress 
models with respect to physical activity, instead of building 
a general stress model working in any physical situation. 
With three activities having different levels of physical 
intensity, we applied three stressors to induce stress, 
obtaining both objective and subjective measures of stress. 
A wide range of physiological features were examined, and 
we achieved stress recognition accuracies between 82% 
(objective) and 87% (subjective), improvements of more 
than 5-10% for many participants when compared to the 
approach without considering physical activity. At the same 
time, however, some challenging issues remain to 
generalize the results reported in this paper. More practical 
and realistic situations of stress in the presence of physical 
activity should be examined for stress recognition through a 
longitudinal field study. Also, we will incorporate more 
sophisticated algorithms like support vector machines to 
manage the increasing complexity of modeling a number of 
physiological features against various factors in the real 
environment. 

ACKNOWLEDGEMENTS 
This material is based upon work supported by the National 
Science Foundation under Grant Number: CNS-0910878, 
funded under the American Recovery and Reinstatement 
Act of 2009 (Public Law 111-5). 

REFERENCES 
1.  The Stress of Life, Hans Selye, New York: McGraw-Hill, 1956. 
2.  http://www.medicinenet.com/stress/article.htm#what 
3.  W. Liao, W. Zhang, Z. Zhu, Q. Ji, and W. Gray, “Toward a 

decision-theoretic framework for affect recognition and user 
assistance,” Int. J. of Human-Computer Studies, vol. 64, no. 9, 
pp. 847-873, 2006. 

4.  D. Mroczek and D. Almeida, “The effect of daily stress, 
personality, and age on daily negative affect,” J. of Personality, 
vol. 72, no. 2, pp. 355-378, 2004. 

5.  K. Plarre, A. Raij, S. Hossain, A. Ali, M. Nakajima, M. Al'absi, 
E. Ertin, T. Kamarck, S. Kumar, M. Scott, D. Siewiorek, A. 
Smailagic, and L. Wittmers, “Continuous inference of 
psychological stress from sensory measurements collected in the 
natural environment,” In Proc. 10th Int. Conf. on Information 
Processing in Sensor Networks (IPSN), pp. 97-108, 2011. 

6.  L. Vizer, L. Zhou, and A. Sears, “Automated stress detection 
using keystroke and linguistic features: an exploratory study,” 
Int. J. of Human-Computer Studies, vol. 67, no. 10, pp. 870-886, 
2009. 

7.  J. Healey and R. Picard, “Detecting stress during real-world 
driving tasks using physiological sensors,” IEEE Trans. 
Intelligent Transportation Systems, vol. 6, no. 2, pp. 156-166, 
2005. 

8.  F. Nasoz, C. Lisetti, and A. Vasilakosm “Affectively intelligent 
and adaptive car interfaces,” Information Science, vol. 180, no. 
20, pp. 3817-3836, 2010. 

9.  L. Ming, V. Rozgic ́, G. Thatte, L. Sangwon, A. Emken, M. 
Annavaram, U. Mitra, D. Spruijt-Metz, and S. Narayanan, 
“Multimodal physical activity recognition by fusing temporal 
and cepstral information,” IEEE Trans. Neural and 

Rehabilitation Systems Engineering, vol. 18, no. 4, pp. 369-380, 
2010. 

10. F. Wilhelm, M. Pfaltz, and P. Grossman, “Continuous 
electronic data capture of physiology, behavior and experience 
in real life: towards ecological momentary assessment of 
emotion,” Interacting with Computers, vol. 18, no. 2, pp. 171-
186, 2006. 

11. V. Kolodyazhniy, S. Kreibig, J. Gross, W. Roth, and F. 
Wilhelm, “An affective computing approach to physiological 
emotion specificity: toward subject-independent and stimulus-
independent classification of film-induced emotions,” 
Psychophysiology, vol. 48, no. 7, pp. 908-22, 2011. 

12. B. Hughes, “Self-esteem and changes in heart rate during 
laboratory-based stress,” Psicológica, vol. 24, vol. 1, pp. 79-91, 
2003. 

13. R. Rylander, “Physiological aspects of noise-induced stress 
and annoyance,” J. of Sound and Vibration, vol. 277, no. 3, pp. 
471-478, 2004. 

14. J. Stocks, N. Taylor, M. Tipton, and J. Greenleaf, “Human 
physiological responses to cold exposure,” Aviation Space and 
Environmental Medicine, vol. 75, no. 5, pp. 444-457, 2004.  

15. A. Sierra, C. Avila, J. Casanova, G. Pozo, “A stress-detection 
system based on physiological signals and fuzzy logic,” IEEE 
Trans. Industrial Electronics, vol. 58, no. 10, pp. 4857-4865, 
2011.  

16. R. Picard, E. Vyzas, and J. Healey, “Toward machine 
emotional intelligence: analysis of affective physiological state,” 
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, 
no. 10, pp. 1175-1191, 2001. 

17. J. Kim and E. Andre, “Emotion recognition based on 
physiological changes in music listening,” IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 30, no. 12, pp. 2067-
2083, 2008. 

18. F. Agrafioti, D. Hatzinakos, and A. Anderson, “ECG pattern 
analysis for emotion detection,” IEEE Trans. Affective 
Computing, vol. 3, no. 1, pp. 102-115, 2012.  

19. D. Wu, C. Courtney, B. Lance, S. Narayanan, M. Dawson, K. 
Oie, and T. Parsons, “Optimal arousal identification and 
classification for affective computing using physiological 
signals: virtual reality stroop task,” IEEE Trans. Affective 
Computing, vol. 1, no. 2, pp. 109-118, 2010. 

20.  S. Hart, “NASA-task load index (NASA-TLX); 20 Years 
Later,” In Proc. the Human Factors and Ergonomics Society, pp. 
904-908, 2006.  

21. P. Rainville, A. Bechara, N. Naqvi, and A. Damasio, “Basic 
emotions are associated with distinct patterns of 
cardiorespiratory activity,” Int. J. of Psychophysiology, vol. 61, 
no. 1, pp. 5-18, 2006. 

22. R. Neapolitan, Learning Bayesian Networks. Prentice Hall, 
2004. 

23.S. Kullback and R. Leibler, “On information and sufficiency,” 
The Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79-86, 
1951. 

24. F. Wilhelm and P. Grossman, “Emotions beyond the 
laboratory: theoretical fundaments, study design, and analytic 
strategies for advanced ambulatory assessment,” Biological 
Psychology, vol. 84, no. 3, pp. 552-569, 2010. 

25. J.-H. Hong and S.-B. Cho, “The classification of cancer based 
on DNA microarray data that uses diverse ensemble genetic 
programming,” AI in Medicine, vol. 36, no. 1, pp. 43-58, 2006. 

26. J. Healey, L. Nachman, S. Subramanian, J. Shahabdeen, and M. 
Morris, “Out of the lab and into the fray: towards modeling 
emotion in everyday life,” Pervasive 2010, LNCS, vol. 6030, pp. 
156-173, 2010. 

279




