
Reducing Users’ Perceived Mental Effort due to Interruptive
Notifications in Multi-Device Mobile Environments

Tadashi Okoshi, Julian Ramos1, Hiroki Nozaki,
Jin Nakazawa, Anind K. Dey1 and Hideyuki Tokuda

Keio University, {slash, chacha, jin, hxt}@ht.sfc.keio.ac.jp
Carnegie Mellon University1, {ingenia, anind}@andrew.cmu.edu

ABSTRACT
In today’s ubiquitous computing environment where users
carry, manipulate, and interact with an increasing number of
networked devices, applications and web services, human at-
tention is the new bottleneck in computing. It is therefore
important to minimize a user’s mental effort due to notifi-
cations, especially in situations where users are mobile and
using multiple wearable and mobile devices. To this end, we
propose Attelia II, a novel middleware that identifies break-
points in users’ lives while using those devices, and delivers
notifications at these moments. Attelia II works in real-time
and uses only the mobile and wearable devices that users nat-
urally use and wear, without any modifications to applica-
tions, and without any dedicated psycho-physiological sen-
sors. Our in-the-wild evaluation in users’ multi-device en-
vironment (smart phones and smart watches) with 41 par-
ticipants for 1 month validated the effectiveness of Attelia.
Our new physical activity-based breakpoint detection, in ad-
dition to the UI Event-based breakpoint detection, resulted in
a 71.8% greater reduction of users’ perception of workload,
compared with our previous system that used UI events only.
Adding this functionality to a smart watch reduced workload
perception by 19.4% compared to random timing of notifica-
tion deliveries. Our multi-device breakpoint detection across
smart phones and watches resulted in about 3 times greater
reduction in workload perception than our previous system.
Author Keywords
interruption overload; interruptibility; mobile sensing;
ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g., HCI):
Miscellaneous

1.INTRODUCTION
There has been an explosion of information available for peo-
ple to read and act on. However, the amount of attention
that can apply to this growing amount of information, has
remained constant [28]. Approaches for dealing with this in-
clude multitasking or dividing attention among a number of
sources, and relying on push notifications to bring informa-
tion to the forefront of their attention. However, notifications
are responsible for an even greater number of interruptions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UbiComp ’15, September 7–11, 2015, Osaka, Japan.
Copyright 2015 c© ACM 978-1-4503-3574-4/15/09...$15.00.
http://dx.doi.org/10.1145/2750858.2807517

sit walk stand walk sit

Manipulating.software.on.Smartphone To.kitchen Pour.coffee Back.to.lab Drink.coffee

Physical'Activity

Semantic'Activity

Tablet

Smart'Phone

Smart'Watch

Mobile'working Coffee'break

Carried'and'used
Used Carried

Wore Used Wore

t

Interruptions
in+random

timings

Used Carried

For'Ubicomp Camera>ready

Figure 1. User’s Notification Experience Scenario

This is exacerbated by the fact that users are carrying, wear-
ing and using a growing number of mobile and wearable com-
puting devices including notebooks, tablets, smart phones,
smart watches or wearable sensors [13, 37], all of which can
deliver interruptive notifications. Making the problem even
worse are the growing number of installed applications on
each device, each of which can also interrupt the mobile de-
vice owner. In particular, communication-based applications
that support phone calls, texts chats, and social networking
particularly suffer from this. But, games, news and other
applications have similar issues as well, leading to a setting
where people’s everyday lives are significantly impacted [6,
33, 42] from a feeling that they are being constantly inter-
rupted by their computing systems.

Given the ever-increasing degree of information overload, the
limited resource of human attention is the new bottleneck [9,
38] in interactive computing. In this paper, we particularly
focus on interruption overload, a form of distraction caused
by the excessive number and inappropriate delivery of noti-
fications from computing systems. All widely-used notifica-
tion systems deliver notifications as soon as they are received,
and this has been shown to negatively affect users’ work pro-
ductivity [1, 2, 5, 29]. Imagine the scenario illustrated in Fig-
ure 1, where Melissa carries, wears, and uses multiple mobile
and wearable devices, including her smart watch on the wrist,
a smart phone, and a tablet. In the beginning, she is sitting
down and doing work on her smart phone. After a while, she
decides to take a coffee break. Melissa stands up, walks to
the kitchen, pours coffee, walks back, sits down on the couch
and enjoys her coffee, watching video on her tablet. In the
current computing environment, Melissa experiences notifi-
cations at “random” timings; that is, as they arrive on her
devices. In other words, notifications from a variety of appli-
cations and services reach Melissa without any consideration
of whether she is actually interruptible, causing divided atten-
tion and possible having negative impacts on her work pro-
ductivity. In ubiquitous computing where computer systems

promote calmness [44], they need to behave (e.g., delivering
notifications in this case) adaptively with regard to the user’s
current attention and interruptibility status.

To address this problem, we follow the proposal of others
(e.g., [24]), to defer notifications until the user is experi-
encing a natural breakpoint [32], defined as the boundary
between two adjacent units of a user’s activity. Deferring
the interruptive notifications to this point can lower the im-
pact of the interruption on users’ cognitive load [1, 21, 22].
Our earlier work on Attelia I [35] focused particularly on
the user’s mobile experience when actively interacting with
her smart phone, using this information to detect breakpoints.
We showed that, by delaying smart phone notifications until
a breakpoint is detected, it reduces users’ perception of work-
load due to interruptive notifications by 33%, as measured by
using NASA-TLX [16] daily. Attelia I performed this break-
point detection in real-time, by sensing user interaction (UI)
events on users’ smart phones and applying machine learning.

In this paper, we extend our earlier work to address the in-
terruption overload problem by leveraging the multiple mo-
bile and wearable devices that users carry in today’s world.
We demonstrate our ability to detect breakpoints (1) using
sensed data from multiple mobile and wearable devices, such
as a smart phone and smart watch, and (2) during user’s daily
life with the devices, including periods in which the devices
are carried or worn but are not actively manipulated or in-
teracted with, in addition to user’s mobile interactions. Our
new system, Attelia II, (1) works on a variety of mobile and
wearable devices, not requiring the use of dedicated external
psycho-physiological sensors, (2) performs real-time detec-
tion of breakpoints to support real-time adaptation, (3) detects
breakpoints both while users are actively manipulating their
devices and when they are not (e.g., carrying it in a pocket),
and (4) is applicable to situations of user mobility and can be
used by a wide variety of applications.

Our in-the-wild user study with 41 participants for 1 month
proved the value of Attelia II. Introducing physical activity-
based breakpoint detection in addition to Attelia I’s UI event-
based breakpoint detection had a reduction in workload per-
ception of 71.8% greater than that of Attelia I. Porting these
detectors to a smart watch reduced user’s workload percep-
tion by 19.4% compared to delivering notifications at ran-
dom times. Lastly, our multi-device combinational break-
point detection model across smart phones and watches re-
duced users’ workload perception by 31.7%, approximately
equating to three times greater reduction than with Attelia I.

The contribution of our paper is four-fold.

• We present the first middleware for real-time breakpoint
detection leveraging a user’s multiple mobile and wearable
devices. This novel system does not require the use of ded-
icated external psycho-physiological sensors nor the mod-
ification of any applications on users’ devices. To the best
of our knowledge, Attelia II is the first system to address
user’s interruptibility in the mobile multi-device context.

• We show the value of physical activity-based breakpoint
detection for reducing users’ workload perception.

• We show how our breakpoint detection on the smart watch
can effectively reduce workload perception.
• We present the results that our “combinational” breakpoint

detection model running on top of multiple mobile and
wearable devices resulted in the biggest reduction amongst
all models.

INTERRUPTION OVERLOAD
Interruption overload is a sub-component of information
overload. It is caused by large numbers of ill-timed notifi-
cations, and has only increased in frequency in recent years.
Not surprisingly, there has been a greater research focus on
the topics of interruptions and multitasking [14]. Rather than
forcing users to manually check whether new information is
available, notifications instead push new information to users,
resulting in faster and increased awareness.

Despite the obvious benefits of notifications, they have pro-
found negative impacts on users’ lives. They increase neg-
ative affect and emotional states, social attribution [1] and
psycho-physiological states [45]. They reduce work produc-
tivity and the quality and amount of time available for deci-
sion making; they also increase the time that it takes to re-
sume a task after attending to a notification [1, 2, 5, 29, 45,
41]. That is, if they even return to their original task [33]. One
common strategy for dealing with these interruptive notifica-
tions is to disable them completely or temporarily. However,
disabling them negates their benefits, with users not receiving
timely information updates. In fact, users prefer to keep us-
ing these notification systems for information delivery even
given the interruption costs, rather than turning them off and
checking for new information manually [25].

Approaches for Mitigating the Cost of Notifications
As opposed to disabling notifications completely, we find that
there are two common approaches for addressing interruptive
overload in the literature: (a) deferring notifications to a more
appropriate time, and (b) mitigating the interruptive nature
of notifications. When deferring notifications, an appropri-
ate deferral time must be identified. A number of researchers
have identified “breakpoints” in user activities as this defer-
ral time. Breakpoints [32] are a concept in psychology in
which a human’s perceptual system segments activities into
a hierarchical structure of discrete sub-actions. The bound-
ary between two adjacent action units is called a breakpoint.
Deferring notifications until a detected breakpoint has been
shown to reduce interruption cost in terms of task resumption
lag and subjective frustration [1, 21, 22]. The other approach,
mitigation, tries to reduce a the impact of the notification on
a user’s workload perception by changing the modality used
to deliver notifications. This can include the use of “silent”
mode, “vibration” mode or only flashing an LED (e.g., [31]).
This approach serves to change the saliency of the interrup-
tion, while leaving the timing of the notifications unchanged.

While these two approaches are complementary, we focus
on notification deferral. Given the growing number of no-
tifications, changing the timing of notifications rather than
their saliency would seem to have greater potential impact
on users’ interruption overload. With this focus, we turn our
attention to identifying interruptive moments or breakpoints.

IDENTIFYING INTERRUPTIBLE MOMENTS
Early work on identifying breakpoints naturally focused on
desktop environments. For example, Horvitz et al. in-
ferred interruptibility accurately in desktop computing en-
vironments, by using context information, such as interac-
tion with computing devices, visual and acoustical analy-
ses, and online calendars [18]. Hudson et al. constructed
statistical models for predicting office workers’ interruptibil-
ity, using long-term audio/video recordings with manually-
emulated sensors of user’s activity status, along with experi-
ence sampling technique [20]. For these systems, recognition
was performed in an a posteriori manner. Later work by Be-
gole et al. [3] and by Horvitz et al. [19] focused on systems
that supported real-time detection of interruptibility, but these
systems required the use of dedicated custom hardware. In
contrast, OASIS also identified breakpoints in real-time, but
did no require custom hardware, instead using information
about user interactions with an application and user-provided
annotations [24]. OASIS deferred the deliver of desktop-
based notifications until a breakpoint was detected. While
both our system and OASIS use breakpoints, there are some
significant differences. OASIS only focused on users inter-
acting with devices in desktop computing, while our solution
focuses users interacting with multiple devices while mobile,
including both user-device interaction and physical activities.
While OASIS employed post-hoc breakpoint annotation, our
system uses a real-time annotation scheme. Finally OASIS
was evaluated in the lab with a specific set of applications,
while our valuation was performed in-the-wild, on user’s own
devices with their own applications.

Detecting Interruptibility in Mobile Environments
Breakpoint detection research has also been conducted in the
context of mobile devices. For example, Ho et al. used wire-
less on-body accelerometers to trigger interruptions when
users transitioned between activities [17]. Interruptions de-
livered at these transition times reduced user annoyance. This
approach is promising, but required the use of an external on-
body sensor. Fischer et al. also identified breakpoints based
on transitions between activities, but focused on moments im-
mediately after phone-based activities including the comple-
tion of phone calls and text messages [8]. Users tended to be
more responsive to notifications after these activities than at
random other timings. Again, this approach is promising, but
is limited to a small set of communications activities.

Other researchers have focused on using a wider variety of
user context to determine moments of interruptibility. For
example, Hofte et al. used an experience sampling methodol-
ogy to collect information on location, transit status, company
and activities in order to build a model of interruptibility [43]
especially for phone calls. Pejovic et al. expanded the use
of context for detecting moments of interruptibility on smart-
phones including user activity, location, time of day, emotions
and engagement. Their system, InterruptMe, uses this infor-
mation to decide when to interrupt users [36]. While their
system needs manually-provided information about the user’s
interruptibility, such as company or emotion, our system sim-
ply relies on the sensor data from user’s devices and does not
need any manual input.

Other work in mobile computing has focused on mitigating
the impact of notifications. This is a complementary approach
to our focus on deferring notifications. Smith et al. attempted
to mitigate the impact of disruptive phone calls, by automat-
ically setting phone call ring tones to different modes, such
as silent answering, declining, and ignoring [39]. Their user
study showed that this approach of identifying which ring
tone to use was useful, even when underlying user behavior
changed. Böhmer et al. also focused on incoming phone calls
and explored the design space of incoming call alerts to users
on smart phones, instead of conventional full-screen notifica-
tions [4]. Their proposed strategies include “postponing” the
call acceptance and “multiplexing” the alert screen. The mul-
tiplexing approach obtained the best evaluation in their large-
scale user study. Their “multiplexing” approach can also be
combined with our deferral approach. The “postponing” ap-
proach looks similar to our deferred scheduling approach, but
is specifically focused on phone call notifications.

Attention with Multiple Devices
There is also research on attention-awareness in multi-device
environments. Dostal proposed DiffDisplays [7], a system
for tracking the display the user is currently looking at by
cameras and computer vision. Inspired by several techniques
for visualizing changes in unattended displays, Garrido pro-
posed AwToolkit [10] for developers to support maintaining
user’s awareness in multi-display systems. The toolkit de-
tects which display is currently being looked at by the user
and provides interruptive notifications with multiple different
levels of “subtlety” to draw the user’s attention to unattended
changes in the displays. Although this Gaze-tracking tech-
nique can be adopted in mobile environments, it is not consid-
ered to be compatible with diverse low-computation mobile
and wearable devices, such as watches or bands, especially
for the purpose of attention target classification. Attelia cur-
rently uses display on/off event for such classification. On the
other hand, for activity recognition, gaze-tracking or blink-
tracking has been used [26], thus it has potential as a source
of information to use for breakpoint detection.

PRINCIPLES FOR DETECTING BREAKPOINTS
As just presented, there has been a lot of research conducted
in identifying breakpoints for the purpose of deferring notifi-
cations. Our own research on detecting breakpoints builds on
this work in the following ways:
• Is feasible for mobile and wearable devices: Users carry

and use multiple mobile and wearable devices for everyday
computing. A breakpoint detection system needs to be able
to run on such platforms. It should not require the use of
any external hardware, other than what users already carry.

• Supports real-time detection: To support notification
adaptation and deferral on the fly, the breakpoint detection
needs to be performed in real-time.

• Can be applied to diverse types of notification sources:
The breakpoint detection system needs to work for diverse
types of notification sources, and not for only e.g., phone
calls and text messages.

• All-day-long use: Breakpoint detection needs to be per-
formed all day long, no matter what the user is doing.

I/O$
Subsystem�

Foreground$Applica9on�

UI#Event�

Detected#breakpoints�

U
nderlying**

Com
ponents�

A2
elia*m

iddlew
are**

layer�
Applica6ons�

Android$
Accessibility$
Framework�

UIEvent$Sensor�

Feature$Extractor�

$
$

Weka�

Classifier�

Android$4.3+�

UI#Event�

Figure 2. Attelia I System Architecture

ATTELIA I
With Attelia I [35], our first system, we partially addressed
the features described above for breakpoint detection. Attelia
I focused on smart phones only and only detected breakpoints
while the user is actively manipulating her phone. Attelia
I is the first system that detects user’s breakpoint (1) solely
on smart phone without any dedicated psycho-physiological
sensors, (2) in real-time, (3) and works with a wide variety of
smart phone applications.

Our approach in Attelia I was to collect the UI Event stream
generated when a user manipulates and interacts with appli-
cations on the smart phone on the go. This event stream was
used as sensor data and fed to a J48 classifier running on the
smart phone to detect breakpoints. Figure 2 shows the sys-
tem architecture of Attelia I. As a middleware service using
Android’s “Accessibility Framework”, Attelia reads the event
stream from the active application currently being manipu-
lated by the user, and periodically classifies whether the cur-
rent time frame is a breakpoint by using an instance of the
Weka machine learning engine.

A controlled in-lab user study showed that delivering notifica-
tions at detected breakpoint timings resulted in 46.2% lower
workload perception compared to randomly-timed notifica-
tions which emulate the “current” notification experience be-
fore Attelia. Further, an in-the-wild user study with 30 partic-
ipants for 16 days validated Attelia’s value, with a 33.3% de-
crease in workload perception compared to randomly-timed
notifications.

DESIGN OF ATTELIA II
Encouraged by our promising results with Attelia I, in this
paper, we build on our past work in two novel and impor-
tant ways. First, we address how breakpoint detection can
be applied in the multi-device (i.e., smart phones and smart
watches) ubiquitous computing environments that users are
often in, and use these devices to detect breakpoints. Second,
Attelia I only detected breakpoints during active interaction
with a smart phone. In Attelia II, we extend the breakpoint
detection to cover all aspects of a user’s daily life, including
the period the devices are carried or worn but not actively
manipulated. We demonstrate the impact of this increased
coverage on users’ workload perception.

sit walk stand walk sit

Manipulating.software.on.Smartphone To.kitchen Pour.coffee Back.to.lab Drink.coffee

Physical'Activity

Semantic'Activity

Interruptions
in+breakpoint

timings

Mobile'working Coffee'break

t

Breakpoint'during'device'manipulation' Breakpoint'in'user’s'physical'activity Deferring'notificationLegend:

For'Ubicomp Camera>ready

Figure 3. User’s Notification Experience Scenario with Attelia II

Figure 3 revisits the same scenario of Melissa shown in the
Introduction section and shows how Attelia II helps Melissa
in this situation. With multiple types of sensing techniques,
Attelia II detects her breakpoints, both during her active de-
vice manipulation (interacting with applications on her smart
phone) on the go and during her physical activity. Notifica-
tions from a variety of applications and services, originally
delivered to Melissa at random timings without Attelia, are
now delivered to her at the detected breakpoint timings. This
notification delivery is less interruptive and lowers Melissa’s
workload perception.

We now describe how Attelia II addresses the four principles
for detecting breakpoints, presented earlier. In the follow-
ing subsections, we provide details of how Attelia II satisfies
these four features.
1. Detection on mobile and wearable devices: Attelia II de-

tects breakpoints on a variety of mobile and wearable de-
vices, such as the smart phone, smart watch and the tablet
in Melissa’s scenario in Figure 3, without the use of an ex-
ternal server or any psycho-physiological sensors, such as
an ECG sensor.

2. Real-time detection: Attelia II detects breakpoints in real-
time (not post-hoc), thus it can be used to adapt notification
timings at run-time.

3. High applicability for a variety of applications: At-
telia II leverages user interface events and physical activity
events, hence it can work with any application installed and
running on users devices. No modification of installed ap-
plications is needed for Attelia to function.

4. Opportunistic breakpoint detection in users’ everyday
life using their devices: Attelia II detects opportune times
for notifications not only during a user’s active interac-
tion (manipulation) with her devices, but also in other non-
active periods, such as when she carries the mobile wear-
able devices but is not actively manipulating them. In
Melissa’s scenario, breakpoints during application usage
on her smart phone will be detected, as will breakpoints
during her physical activities (e.g., walking, standing, or
sitting) that are detected in the second phase. With this
hybrid approach, Attelia II leverages information from her
multiple devices to detect breakpoints throughout her day.

“Breakpoint” as a Temporal Target for Interruption
Referring to the results from our previous work and other re-
lated research, Attelia II uses “breakpoints” [32] as a tem-
poral target for sensing an “opportune moment” for deliver-
ing interruptive notifications with reduced user workload per-

ception. Related work in real-time sensing of available user
attention or cognitive load using psycho-physiological sen-
sors showed that at least two psycho-physiological sensors
are needed even in non-mobile situations [15]. Given the bur-
den of wearing a psycho-physiological device constantly, our
approach only uses the users’ mobile devices, and attempts to
sense more coarse-grained, but easier to sense signals, from
which appropriate timings for notifications can be inferred. In
Attelia II, we introduce two different notions of breakpoints,
namely User Interaction-based Breakpoint and Physical
Activity-based Breakpoint.
User Interaction-based Breakpoint
While the user is manipulating a device that he is carrying or
wearing, there is an application that is the target of his ma-
nipulation. Thus, for the period when the device is actively
being manipulated, we focus on the interaction between the
user and the application and use that information for detect-
ing a user’s breakpoints. Although the application itself is
one possible source of knowledge about breakpoints, using
knowledge from the internals of any specific application is
not feasible nor scalable, given the huge number of applica-
tions available and the fact that application developers would
need to expose internal information at development time. In-
stead, we collect run-time status events from the operating
system and executing applications, and use them to identify
relationships to ground truth values of interruptive overload
provided by users, during a training phase. During this train-
ing phase, users indicate when they are interruptible by press-
ing an always-present button on their interface. This training
data is provided to a J48 classifier running on the mobile de-
vice. Note that the UI-based Breakpoint Detection described
here is the same as what was presented in Attelia I. For more
details, refer to [35].

Physical Activity-based Breakpoint
In our daily lives with smart phones and smart watches, there
is a significant amount of time when we just carry or wear
them but do not actively use (manipulate) them. For example
in Melissa’s scenario, she wears her smart watch and carries
her smart phone in her pocket but does not actively manipu-
late them while moving from the lab to the kitchen, getting
coffee and returning to the lab. Another example is when a
user is just reading a book, sitting on a sofa, and wearing his
smart watch. To comprehensively address interruption over-
load in a user’s daily life, we need to handle this type of situa-
tion, by finding an opportune moment to deliver notifications
while users are not actively manipulating their devices.

To this end, we focus on transitions in a user’s physical ac-
tivity, such as “when a user stands up” or “when a user
stops running”. We specifically hypothesize that when a per-
son changes her activity from a high energy state to a lower
energy state, that timing can be strongly considered as her
breakpoint. (Later we validate this hypothesis with input
gathered from users.) Concretely on the mobile and wearable
devices, Attelia II declares a physical activity-based break-
point when such a change in the user’s activity is detected, us-
ing activity recognition mechanisms built on top of the hard-
ware sensors already available on mobile platforms, such as
the accelerometer or GPS.

!!!!!!!!!!Combina)onal!!Breakpoint!Detec)on!!�

UI5based!
Breakpoint!Detec)on�

Inter5Device!Breakpoint!Sharing�

Physical!Ac)vity5based!
Breakpoint!Detec)on�

Applica)on�

Detected&breakpoints&over&mul4ple&devices�

Final&breakpoint&judgment�

Detected&breakpoint� Detected&breakpoint�

!
Combina)onal!
Detec)on!!
Model�

Figure 4. Attelia II Layered Breakpoint Detection Model

Mobile Sensing to Real-Time Breakpoint Detection
In order to realize real-time detection on multiple mobile and
wearable devices, Attelia II has its own model for overall
breakpoint detection shown in Figure 4. (1) On each device,
both the “UI-based Breakpoint Detection” (while the device
is being actively manipulated) and “Physical Activity-based
Breakpoint Detection” (while the device is not being manipu-
lated) will be running, according to the current device usage.
(2) Each detection component executes its own local binary
classifier to detect breakpoints at a configured periodicity and
outputs the binary value. Those local classification outputs
along with the device usage status information will be ex-
changed across a user’s multiple devices via an “Inter-Device
Breakpoint Sharing” layer. (3) A ”Combinational Breakpoint
Detection” algorithm reads the current values of all underly-
ing local breakpoint detectors and device usage statuses, and
generates a final decision on the user’s breakpoint status
across devices, based on the selected “Combinational Detec-
tion Model”.

ATTELIA II SYSTEM ARCHITECTURE
Based on the design in the previous section, we describe the
system architecture of Attelia II implemented on the Android
platform in this section. Figure 5 shows the system struc-
ture of Attelia II prototype implemented on the generic An-
droid 4.3 (and above) platform and Android Wear 5 (and
above) platform. The current prototype runs on a variety of
Android devices including smart phones, tablets, notebooks,
smart cameras, and smart watches. Attelia II is implemented
as a middleware service for the Android platform and runs
on each device of the user. The middleware implementation
allows the service to be distributed through the Google Play
store and contributes to the deployability of the system to end
users.

Attelia II uses several underlying mechanisms inside the An-
droid platform (along with additional components we imple-
mented). Each individual breakpoint detector reads a data
stream from the underlying systems, such as activity recog-
nition results or the UI event stream and detects breakpoints
by using its own feature extraction and classification (pow-
ered by Weka [30]) logic, respectively. These detection re-
sults are exchanged among multiple devices over Bluetooth-
based PAN. If no breakpoints are detected by the low-level
detectors, nothing is done. However, when a breakpoint is
detected, the Combinational Breakpoint Detector combines
these results, according to a configured Detection Model, and
produces a final breakpoint judgment.

Communica)on�

Physical/Ac)vity/
Breakpoint//
Detector�

Google/Ac)vity/
Recogni)on� Android/

Accessibility/
Framework�

UIBBased/
Breakpoint/
Detector�

Combina)onal//
Breakpoint/Detector�

Sensors/
(e.g.,/accelerometer)�

App/3�App/2�App/1� App/n�...�

Sensor'data�

Detected'breakpoints�

Detected'breakpoints'over'mul5ple'devices�

Final'Breakpoint'Judgment�

U
nderlying**

Com
ponents�

Communica)on�

Physical/Ac)vity/
Breakpoint//
Detector�

Ac)vity//
Recogni)on� Raw/UI//

Events�

UIBBased/
Breakpoint/
Detector�

Combina)onal//
Breakpoint/Detector�

Sensors/
(e.g.,/accelerometer)�

App/3�App/2�App/1� App/n�...�

Sensor'data�

Detected'breakpoints�

Detected'breakpoints'over'mul5ple'devices�

Final'Breakpoint'Judgment�

A2
elia*m

iddlew
are**

layer�

Android/4.3+� Android/Wear/5+�

w�

w�w�w�w�

w�Classifier/with/Weka�Legend:/�

Combina)onal/
Detec)on//
Model�

Applica6ons�

PAN�

InterBDevice/Breakpoint/Sharing�

Figure 5. Attelia II System Architecture

Each device runs an identically selected Combinational
Breakpoint Detector, that has access to the same information
as the others (e.g., which detectors detected a breakpoint and
which devices are actively being used). When they make a
final judgment that a breakpoint has occurred, they use the
device usage information to determine which device should
deliver any deferred notifications. For example, if the phone
is being used, the phone should receive the notifications since
it already has the user’s attention.

UI-based Breakpoint Detection
Table 1 shows the list of mechanisms used for each detector.
On the generic Android platform, Attelia II uses the same
UI-based breakpoint detection mechanism as Attelia I. Using
the Android Accessibility Framework [11], the detector reads
the UI event stream, extracts feature vectors, and executes a
J48 classifier on Weka every 2.5 seconds, while the device
is being actively used (more specifically, while the device’s
screen is on and there is any UI event fired in this time frame).

On the Android Wear 5 platform, since the Android Acces-
sibility Framework is not provided as of version 5.0.1, we
implemented a breakpoint detector which uses the Linux In-
put Subsystem. Due to the nature of available Android smart
watches and the fact that most current “Android Wear” prod-
ucts mainly support checking (Android’s) notifications, we
take any manipulation on the watch screen as an indication
that the user is at a breakpoint. Thus, the current breakpoint
detector implementation looks for breakpoints every 2.5 sec-
onds, if more than one tap-related event comes from the un-
derlying Linux Input Subsystem in this time window.

Physical Activity-based Breakpoint Detection
Physical activity-based breakpoint detection is based on a
transition in a user’s physical activity, such as when she stops
walking. This breakpoint detector relies on underlying activ-
ity recognition that generates labels such as walking, running,
or still, and detects breakpoints according to their changes.

Breakpoint Detector Generic Android Android Wear

UI-based Detector Accessibility Framework [11] Linux Input Subsystem

Physical Activity Google Play Services Original accelerometer
-based Detector Location APIs [12] -based activity recognition

Table 1. Breakpoint Detection Mechanisms in Attelia II

To
onbike running walking working still

onbike 4.7 (3.1) 6.8 (2.5) 4.9 (3.4) 6.4 (3.0)
running 4.7 (3.0) 8.2 (1.4) 4.5 (3.3) 7.0 (2.6)

From walking 4.3 (3.0) 5.0 (2.9) 5.3 (3.3) 7.4 (2.3)
working 4.8 (3.5) 5.4 (3.1) 6.9 (2.6) 5.8 (3.6)

still 4.7 (3.3) 5.1 (3.1) 7.3 (2.3) 3.8 (2.9)

Table 2. Ground Truth on Physical Activity Change Breakpoint
Each number shows the average (and standard deviation) using a 10-point Likert scale.

Values in bold indicate those used by the breakpoint detector.

Classified As
still walking running

Ground still 92.2% 7.7% 0.0 %
truth walking 4.3% 95.1% 0.6 %

running 5.1% 5.3% 89.8%

Table 3. Confusion Matrix: Cross Validation of Activity Recognition

To confirm our earlier hypothesis about detecting breakpoints
in during changes in physical activities (i.e., that breakpoints
exist when moving from a high-energy to a low-energy activ-
ity), we conducted a survey. The survey asked participants to
rate, using a 10-point Likert scale, the likelihood of a break-
point when transitioning between each pair of the following
physical activities: bike-ride, running, walking, working at a
desk, and being still. Table 2 summarizes the results from 26
university students. Based on these results, we built a model
for detecting physical activity-based breakpoints, using val-
ues greater than 5 as indicators of breakpoints.

Generic Android Platform
On the generic Android platform, physical activity-based
breakpoint detection is built on top of the “ActivityRecogni-
tion” API of Google Play Service Location APIs [12]. Using
sensors and the GPS embedded in the Android devices, this
API returns the device’s current activity, such as “STILL”,
“IN VEHICLE”, “RUNNING”, or “ON BICYCLE”. The
frequency with which the API returns the activity depends
on the Android platform version. Using this activity infor-
mation, our current Attelia II implementation classifies the
activity changes as breakpoints according to Table 2.

Android Wear Platform
On the Android Wear 5 platform, we implemented our own
activity recognition since the API described above is not sup-
ported. We built an accelerometer-based activity recognizer
according to [34]. Our implementation uses the Sony Smart-
Watch3 [40], which collects sensor data at 50Hz. Based
on previous literature on activity recognition [34], we use
22 commonly used time-domain and frequency features ex-
tracted over a 3-second sliding window and a J48 decision
tree classifier implemented with Weka [30]. Due to the re-
duced capability of Android Wear devices, our current imple-
mentation only classifies “still”, “walking”, and “running”.
We trained a J48 model with ground truth collected from 10
users. The cross validation result is shown in Table 3.

Inter-Device Communication
Attelia II shares the breakpoint detection events and device-
usage status across multiple devices via Bluetooth. When
a local breakpoint detector detects a breakpoint, attributes
about the breakpoint, including its timestamp and detector
type, will be sent to other devices in real-time. This assumes
that the user is wearing and carrying devices that are within
the range of Bluetooth wireless communication. For device-
usage status, Attelia II sends “DEVICE IN USE” to remote
devices when the screen of the local device turns on, and
“DEVICE NOT USED” when the screen turns off. This sim-
ple implementation covers most situations in which a user is
manipulating target devices, since most of the time the screen
is on when the user is interacting with the a device.
Combining Breakpoint Detection
Every time a breakpoint detection event comes from any User
Interaction-based or Physical Activity-based Breakpoint De-
tector, our Combinational Breakpoint Detector makes the fi-
nal decision about whether there is currently a breakpoint, by
considering the output of all detectors. Any breakpoint de-
tected by an individual detector within the last 10 seconds is
considered to be a “current” breakpoint.

EVALUATION
Using the Attelia II prototype described in the previous sec-
tion, we conducted an in-the-wild user study with 41 partici-
pants for 1 month to evaluate how Attelia II performs in users’
multi-device environments. Our objectives in this study were
as follows:

1. The Attelia I system used only User Interaction-based
breakpoint detection on smart phones. We investigated
whether the addition of Physical Activity-based breakpoint
detection on smart phones would result in reduced work-
load perception when dealing with notifications.

2. We wanted to understand the value of having breakpoint
detection on a worn smart device. So, on the smart watch
alone, we compared the impact of performing breakpoint
detection for delivering notifications compared to random
delivery timings.

3. As there are different possible ways to combine the dif-
ferent detectors for making a final decision about whether
a breakpoint has occurred, we compared different combi-
nations of watch and phone breakpoint detectors to each
other, to random delivery and to Attelia I.

Participants
41 (31 male and 10 female) participants were recruited for
the study. The participants were university students and staff
members, with ages between 19 and 26. 24 participants came
from computer science and information technology related
departments, while the other 17 came from other schools,
such as economics, psychology, or social sciences. All of
the participants were smart phone (Android OS version 4.3
or above) users in their daily lives. None had a smart watch,
thus we provided each with a Sony SmartWatch3 device to
use during the study. Subjects were paid $100 for their par-
ticipation, and were eligible to win 1 of 2 smart watches via
a lottery.

Model
Name

Detectors used for combinational breakpoint detection
Watch Phone

UI-based Activity-based UI-based Activity-based

Random None of detectors used. In random timings.

Phone UI Not used Not used Used Not used
Phone UI Act Not used Not used Used Used

Watch UI Act Used Used Not used Not used

Combo(c) Used Not used Used Not used
Combo(d) Used Not used Not used Used
Combo(e) Not used Used Used Not used
Combo(f) Not used Used Not used Used
Combo(g) Not used Used Used Used
Combo(h) Used Not used Used Used
Combo(i) Used Used Not used Used
Combo(j) Used Used Used Not used
Combo(k) Used Used Used Used

Combo(x) OR(Combo(h), (g), (f), (j), (d))

Table 4. Combination Breakpoint Detection Models

Overview of the Experiment Procedure
Our experimental procedure consisted of three parts. (1) At
the beginning of the study, each participant received instruc-
tions for the study, signed our consent form for participation,
and received a Sony SmartWatch3. We paired the watch to the
participant’s phone and installed Attelia II on both devices.

(2) Starting from the next morning, the data collection and
breakpoint detection began and lasted for 31 days. Every
day, each user experienced Attelia’s interruptive notifications,
whose timings are based on a randomly selected “breakpoint
detection model” from those models shown in Table 4. At-
telia II contained definitions of all these models, but these
were hidden inside Attelia, thus users did not know which
model they were being exposed to each day. Everyday, both
devices were set to the same chosen model.

To explore our third objective, we split the 31-day experiment
into 2 phases. Table 5 shows the number of days that each
model was configured to be selected during each phase. Dur-
ing the first phase, a special “comparison” mode, described
later, was configured to collect data efficiently on multiple
different combinations of models. During the 2nd phase, the
model was changed randomly, but evenly, among the speci-
fied 5 models everyday, to prevent ordering effect.

(3) After 31 days, participants filled out the post-experiment
survey, uninstalled the Attelia service, returned the watch (ex-
cept for the lottery winners), and were paid.

Experimental Setup
Combinational Breakpoint Detection Model
In order to achieve all the objectives described above, we cre-
ated a series of combinational breakpoint detection models as
shown in Table 4. Each strategy has a different set of under-
lying detectors to be used for the combinational detection.

The Random model does not use any detectors and displays
notifications using random timings. This model emulates
what people are currently interrupted by notifications.

Phone UI and Phone UI Act are prepared for the first ob-
jective. Phone UI is actually the Attelia I system, which

Phase Phase 1 (14days) Phase 2 (17 days)

Model (special “comparison” mode) Random Phone UI Phone UI Act Watch UI Act Combo(x)

Duration (days) 14 3 3 3 3 5

Table 5. Phase, Used Model and Duration during the 31 Day User Study

uses only a UI-based detector on the phone. This model
delivers notifications at the breakpoint timings detected by
the UI-based detector while the device is manipulated (the
screen is on), and shows notifications in the random timing
while the device is not used (the screen is off). On the other
hand, Phone UI Act adds the use of the physical activity-
based detector. The difference between the two models is that
Phone UI Act delivers notifications at the breakpoint timings
detected by activity-based detector while the device is not
used, instead of the random timings.

Watch UI Act, along with Random, describes the condi-
tions for the second objective. Watch UI Act delivers noti-
fications at the breakpoint timings detected by the UI-based
detector while the watch is manipulated (the screen is on),
and delivers notifications at the breakpoint timings detected
by the watch’s activity-based detector while the watch is not
used (the screen is off).

Combo(c) through Combo(x) are the models which involve
multiple detectors across devices and were compared for
the third objective. These “Combo” models internally use
“AND” logic over multiple underlying detectors to make their
final breakpoint decision. We used these models to explore
whether multiple agreements amongst individual breakpoint
detectors might perform better than the individual ones.

Interruptive Notifications
The interruptive notification took the form of a full-screen Ex-
perience Sampling Method (ESM) question that asked users
to indicate whether the current moment was a good time to be
interrupted, using a 5-point Likert scale (1=strongly disagree
to 5=strongly agree). This custom notification was employed
due to the limitation on Android OS where third party soft-
ware cannot control timings of Android’s “official” notifica-
tion system. If the user was actively manipulating the smart
phone, then the notification was delivered on the phone. Oth-
erwise, we defaulted to delivery on the watch. All the no-
tifications were treated equally without concept of “impor-
tance”. The minimum interval between two consecutive no-
tifications was set to 1500 seconds, the maximum interval to
1800 seconds, and the daily maximum number of notifica-
tions to 20. The study software also was configured to only
send notifications between 8AM to 8PM daily. The parame-
ter values were carefully chosen after interviewing prospec-
tive participants about their daily lives, to acquire a sufficient
number of data samples without overburdening them.

Measurement
We collected user’s answers to ESM notifications as de-
scribed above. In addition, each night, users were given the
NASA-TLX [16] survey (on the web), a validated instrument
for assessing user’s workload. The users were asked to re-
view their notification experience of the day with the selected
notification delivery strategy by Attelia, and to evaluate their
perception of the workload subjectively.

66.2$$
59.1$$

54.0$$ 53.3$$

45.2$$

0$$

10$$

20$$

30$$

40$$

50$$

60$$

70$$

Random$ Phone_UI$ Phone_UI_Act$Watch_UI_Act$ Combo(5x)$

N
AS

A$
TL
X(
W
W
L(
Sc
or
e�

Breakpoint(Detec6on(Model�
Figure 6. NASA-TLX WWL Scores

Collected Data
Analyzing all the collected data uploaded to our server during
31 days, the average daily duration of device operation, dur-
ing the times when each of two UI-based breakpoint detectors
were active, was 227 minutes on the phone and 1.4 minutes
on the watch. When we group operations that are separated
by less than 60 seconds, the per-user daily average number of
device operations are 174 on the phone, and 9.5 on the watch.
Also, the average number of displayed notifications for each
user was 10.5 times per day, with 7.3 notifications of these
being attended to by the user.

Result: Value of Physical Activity-based Breakpoint De-
tection
Our first experiment was to investigate whether the addi-
tion of physical activity-based breakpoint detection to the al-
ready existing UI-based detection on smart phones, would re-
duced user’s workload perception when dealing with notifi-
cations. We evaluated these two approaches (Phone UI and
Phone UI Act) and “Random” for each user, over a period of
9 days, and compared the resulting workloads.

Figure 6 shows the average TLX Weighted Workload (WWL)
scores among the models. The Phone UI Act model results
in significantly lower workload perception, compared to the
Phone UI (Attelia I) model and Random, which approxi-
mates how people are currently interrupted by notifications.
When compared to the baseline (Random), Phone UI Act
had a lower score by 12.2 (i.e., reduced workload), while
Phone UI reduced the workload score only by 7.1. The rel-
ative gain (or reduction in workload perception) from using
the Phone UI Act model is 71.8%, compared to the Phone UI
(Attelia I) model.

A Friedman test revealed a significant effect of notification
strategy on the WWL score (χ2(4) = 18.5, p < 0.01).
A post-hoc pair-wise comparison using Wilcoxon rank sum
tests showed the significant differences between Random and
Phone UI (p < 0.05, γ = 0.28), between Random and
Phone UI Act (p < 0.05, γ = 0.50), and between Phone UI
and Phone UI Act (p = 0.05, γ = 0.24). Therefore, we
can confirm our first hypothesis that adding physical activity
breakpoint detection to smartphones is an improvement over
just having UI-based breakpoint detection.

Model (c) (d) (e) (f) (g) (h) (i) (j) (k) Random

(1)Average gain across highest-gainers 1.28 1.46 1.17 1.45 1.62 1.72 1.40 1.47 (N/A) (1.00)
(2)Number of displayed ESM 300 46 194 170 68 8 6 72 0 1043
(3)Number of answered ESM 249 34 165 137 54 7 6 58 0 647

Table 6. ESM Score Results on “Combo” Models

2.39%%
2.50%%

2.58%%

2.86%%

2.68%%

2.0%%

2.5%%

3.0%%

Random% Phone_UI% Phone_UI_Act%Watch_UI_Act% Combo(5x)%

ES
M
$S
co
re
�

Breakpoint$Detec1on$Model�

Figure 7. ESM Scores

Figure 7 shows the average ESM interruptibility (5-point Lik-
ert scale) scores among the models. The Phone UI Act model
was rated as providing more appropriate interruptions, when
compared to both Phone UI (Attelia I) and Random.

Result: Attelia II on the Smart Watch
Our next experiment was to investigate whether Attelia II on
the watch would reduce user’s workload perception. Taking a
similar approach as for the previous experiment, we evaluated
the Watch UI Act model for each user, over a period of 3 days
and compared the resulting workload to that of the Random
model from the previous experiment.

In Figure 6 the Watch UI Act model results in significantly
lower workload perception, compared to the Random model
(a reduction in workload score of 12.8, or 19.4%). A pair-
wise comparison using Wilcoxon rank sum tests showed the
significant differences between Random and Watch UI Act
(p < 0.05, γ = 0.35).

Result: Inter-Device Combinational Models
The final experiment was to investigate the power of inter-
device combinational breakpoint detection. Since the number
of combinational models (“Combo” models in Table 4) are
large, we split the experiment into two phases.

Phase 1: Choosing the Best Model
For the first phase of the study, which lasted for 14 days, our
goal was to evaluate the accuracy of the different combina-
tional models: Combo(c) through Combo(k). To do so, we
configured Attelia into a special “comparison” mode. We set
all four breakpoint detectors to be active (phone UI, phone
physical activity, watch UI, watch physical activity). When-
ever any of the detectors detected a breakpoint, an ESM-
based notification was delivered to the user. The notification
asked users to indicate whether it was delivered at an inter-
ruptible moment, using a 5 point Likert-scale. In addition,
we examined the state of the other three breakpoint detectors.
With the state of all four breakpoint detectors, and the ESM
value, we could assess the value of all 9 combinational mod-
els. For example, consider a situation when a user is inter-
acting with her smart phone and the smart phone’s UI-based
breakpoint detector is triggered. In addition, her watch’s UI-
based breakpoint detector was not triggered because she was

not manipulating it, but both the watch’s and the phone’s
physical activity-based detectors were triggered because she
transitioned from walking to being still. This combination
of detectors corresponds to the Combo(g) model. Using the
gathered ESM response, we can assess whether this combi-
nation accurately detected a breakpoint.

Note that we capped the daily number of breakpoints to 20.
Our goal was to acquire 2 ESM responses for each of the 9
combinational models and the Random model each day. To
ensure that we achieved this goal, if the Combinational De-
tector finds a model that can be evaluated at this moment (e.g.,
Combo(h)), and if the model has not already had its two ESM
responses, only then will the ESM notification will be dis-
played. Otherwise, no notification is delivered. To collect 2
responses for the Random model, “Random”-based notifica-
tions were randomly triggered twice daily.

Table 6 summarizes the results. For each user and for each
Combo model, we calculated the average ESM score (5-point
Likert scale) and compared it to the average ESM score for
the Random model. We define the difference between these
two scores as the “gain” value. We then looked at which
model provided the biggest gain for each user. Row (1)
shows, for each model (Combo(c) through (j)), the gain av-
eraged across the users for whom that model had the highest
gain. We can clearly see that, for the models that use more of
the underlying detectors, (i.e., (g), (h), (i), and (j)), the gain
is higher. Note that Combo(k) notification, which reflects the
situation where all of 4 detectors detecting breakpoints, did
not occur during our study. However, as Row (2) shows, we
also observed that the number of answered ESMs (and corre-
spondingly, the number of delivered ESMs - Row 2 - is quite
small for those models. This is expected as it is less likely
that 3 or more detectors will be active at any given time.

With these results, we chose the best 5 models (those with the
highest average gain), and combined them with a disjunction
(i.e., a logical OR). We label this new model as Combo(x)
and we use this in phase 2 of our user study where we com-
pare it to the non-combinational models described earlier.

Phase 2: The Power of the Best Model
After the first phase ended and we successfully created the
model Combo(x), we began phase 2 which lasted for 17 days.
We evaluated this model with our other models: Random,
Phone UI, Phone UI Act, and Watch UI Act. Note that ex-
periments 1 and 2 were conducted during phase 2, and it is
those results that we compare to Combo(x). All users experi-
enced all models for at least 3 days, in a random ordering.

Again, Figure 6 shows the comparisons of average TLX
WWL scores across the models. The Combo(x) model has
a significantly lower workload than the other models, includ-
ing Phone UI Act and Watch UI Act. Combo(x) amazingly
resulted in an 295.1% more reduction in workload percep-

tion, compared to Phone UI (Attelia I). When compared to
the baseline (Random), Combo(x) resulted in a score that
was 21.0 points lower, while Phone UI resulted only in a
reduction of 7.1. A post-hoc pair-wise comparison using
Wilcoxon rank sum tests showed the significant differences
between “Random” and “Combo(x)” (p < 0.01, γ = 0.71),
between “Phone UI” and “Combo(x)” (p < 0.01, γ = 0.51),
and between “Phone UI Act” and “Combo(x)” (p = 0.05,
γ = 0.25).

DISCUSSION
In our in-the-wild user study, we demonstrated the value of
Attelia II in a multi-device environment. We showed that
an introduction of physical activity-based breakpoint detec-
tion in addition to Attelia I’s UI event-based breakpoint de-
tection resulted in a 71.8% greater reduction in users’ work-
load perception. Using both of these detectors on the smart
watch resulted in a reduction of 19.4% in user cognitive
load, compared to random notification delivery. Finally, our
best multi-device combinational breakpoint detection model
“Combo(x)” resulted in a 31.7% lower workload perception
compared to the random case, which is almost three times
greater reduction than that in Attelia I. Now we discuss fur-
ther research opportunities and challenges that this result en-
ables.

Figure 7 shows the results of the average ESM scores for
each breakpoint detection model. The average scores across
the models show promising values in terms of users’ self-
reported interruptibility. However, there were no statistical
significance between the different models. We hypothesize
that the responses for the Watch UI Act model has a higher
(not significant) mean is that participants were interacting
with their smart watch (which mostly just supports applica-
tion notifications), and at that times, they were interruptible.
This happened relatively infrequently as the watch was used
relatively infrequently, thus not impacting the ESM score for
Combo(x). Despite the lack of significance in these results,
the results from the NASA-TLX survey clearly shows that
users’ workload perception was reduced by each of the differ-
ent approaches in Attelia II. From these results we argue that,
although users sometimes might not be aware of the direct
value of Attelia II’s breakpoint timing-based notification de-
livery, their overall workload perception was surely affected
by our system.

Next, more detailed analysis on user’s interruptibility with
regard to changes in physical activity serves as an interesting
research opportunity for us, given that smart phone platforms
come with activity recognition APIs. Initially, we had a hy-
pothesis that people would have breakpoints when changing
from a “high energy” state to a “low energy” state, such as
“stopping walking”. However, our self-report data in Table 2
shows that there are breakpoints when going from low states
to high states, such as “still” to “walking”.

Classifying multiple levels of breakpoints is another oppor-
tunity to improve breakpoint detection capability of Attelia.
Iqbal et al. found that there are at least three granularities
of breakpoints, “coarse”, “medium” and “fine”, that users de-
tect reliably [23]. Current Attelia implementation classifies

a breakpoint in a binary manner, without considering gran-
ularity. Multi-level breakpoint detection, possibly using the
information from the source detector, such as the concrete
breakpoint type, points to an interesting future research op-
portunity.

Deployment of our system with “real” notifications from
“real” Android applications is still an open challenge for
us. Due to the current limitations with the Android plat-
form, where the standard notification system can only be cus-
tomized or replaced via OS-level changes, Attelia currently
uses an artificial interruptive notification system we built for
our evaluation. We are currently working on an “Attelia in-
terruptibility API” on top of our middleware for other appli-
cations to use.

Further introduction and opportunistic combinations of other
wearable devices, such as smart glasses [27] with gaze-
tracking or blink recognition features, is yet another research
opportunity for us. In users’ multi-device situation, in which
some of these devices have their own dedicated sensors and
some do not, we need to investigate the value in having sub-
sections of our system on the more impoverished devices.

Determining which device to send notifications is another re-
search challenge. In our study, for simplicity, we configured
the notification destination such that, if the user was actively
manipulating the smart phone, then the notification was de-
livered on the phone. Otherwise, we defaulted to delivery on
the watch. We may apply other display techniques developed
by related research in the multi-display context [7, 10].

Currently, our “workload perception” measurement using
nightly NASA-TLX survey has a limitation in terms of the
temporal distances between the actual interruptive notifica-
tion and the survey. Although we asked the participants to
review their notification experience of the day in terms of the
timings (not in terms of the number of notifications), their
subjective evaluation at the end of the day can be influenced
by several non-experiment-related aspects of their lives. Con-
ducting such survey during the day itself can be another pos-
sible “workload” for the users. A lightweight but efficient sur-
vey methodology should be investigated as our future work.

CONCLUSION
In this paper, we proposed Attelia II, a novel middleware
which detects opportune moments in which to interrupt and
deliver notifications to users in their multi-device mobile
and wearable environment. Based on UI-based and phys-
ical activity-based breakpoint detection techniques, Attelia
II identifies such timings in real-time, without any exter-
nal psycho-physiological sensors, and without modification
to applications. Our evaluation through an extensive user
study with smart watches and smart phones demonstrated the
value of Attelia II. The addition of physical activity-based
breakpoint detection improved Attelia’s effectiveness over
UI-based breakpoint detection. Attelia II also performed ef-
fectively on the smart watch. Our combinational breakpoint
detection model that uses physical and UI-based breakpoint
detections on both the watch and phone resulted in further
significant reduction in users’ workload perception.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers and especially our shep-
herd for their help in improving the paper’s presentation and
technical content. The authors gratefully acknowledge the
support of the students and staffs of Hide Tokuda Lab in Keio
University and Ubicomp Lab in Carnegie Mellon University
for continuous discussion, collaboration and advise as well
as for helping to collect large amount of experimental data.
This work was supported by Ministry of Education, Culture,
Sports, Science and Technology (MEXT) Grant-in-Aid for
the “Research and Development for Big Data Use and Appli-
cation” and for the “Program for Leading Graduate Schools”.

REFERENCES
1. Adamczyk, P. D., and Bailey, B. P. If not now, when?:

the effects of interruption at different moments within
task execution. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’04 (2004), 271–278.

2. Bailey, B. P., and Konstan, J. A. On the need for
attention-aware systems: Measuring effects of
interruption on task performance, error rate, and
affective state. Computers in Human Behavior 22, 4
(2006), 685 – 708.

3. Begole, J. B., Matsakis, N. E., and Tang, J. C. Lilsys:
Sensing unavailability. In Proceedings of the 2004 ACM
Conference on Computer Supported Cooperative Work,
CSCW ’04 (2004), 511–514.

4. Böhmer, M., Lander, C., Gehring, S., Brumby, D. P., and
Krüger, A. Interrupted by a phone call: Exploring
designs for lowering the impact of call notifications for
smartphone users. In Proceedings of the 32nd Annual
ACM Conference on Human Factors in Computing
Systems, CHI ’14 (2014), 3045–3054.

5. Czerwinski, M., Cutrell, E., and Horvitz, E. Instant
messaging: Effects of relevance and timing. In People
and computers XIV: Proceedings of HCI, vol. 2, British
Computer Society (2000), 71–76.

6. Czerwinski, M., Horvitz, E., and Wilhite, S. A diary
study of task switching and interruptions. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’04 (2004), 175–182.

7. Dostal, J., Kristensson, P. O., and Quigley, A. Subtle
gaze-dependent techniques for visualising display
changes in multi-display environments. In Proceedings
of the 2013 International Conference on Intelligent User
Interfaces, IUI ’13 (2013), 137–148.

8. Fischer, J. E., Greenhalgh, C., and Benford, S.
Investigating episodes of mobile phone activity as
indicators of opportune moments to deliver notifications.
In Proceedings of the 13th International Conference on
Human Computer Interaction with Mobile Devices and
Services, MobileHCI ’11 (2011), 181–190.

9. Garlan, D., Siewiorek, D., Smailagic, A., and Steenkiste,
P. Project aura: toward distraction-free pervasive

computing. Pervasive Computing, IEEE 1, 2 (april-june
2002), 22 –31.

10. Garrido, J. E., Penichet, V. M. R., Lozano, M. D.,
Quigley, A., and Kristensson, P. O. Awtoolkit:
Attention-aware user interface widgets. In Proceedings
of the 2014 International Working Conference on
Advanced Visual Interfaces, AVI ’14 (2014), 9–16.

11. Google Inc. Designing for accessibility - Android
Developers. https://developer.android.com/intl/
ja/guide/topics/ui/accessibility/index.html.

12. Google Inc. Making your app location-aware - Android
Developers. https://developer.android.com/intl/
ja/training/location/index.html.

13. Google Inc. The new multi-screen world — think with
google.
http://www.google.com/think/research-studies/
the-new-multi-screen-world-study.html, Aug.
2012.

14. Gould, S., Brumby, D., Cox, A., González, V., Salvucci,
D., and Taatgen, N. Multitasking and interruptions: a sig
on bridging the gap between research on the micro and
macro worlds. In CHI’12 Extended Abstracts on Human
Factors in Computing Systems (2012), 1189–1192.

15. Haapalainen, E., Kim, S., Forlizzi, J. F., and Dey, A. K.
Psycho-physiological measures for assessing cognitive
load. In Proceedings of the 12th ACM international
conference on Ubiquitous computing, Ubicomp ’10
(2010), 301–310.

16. Hart, S. G., and Staveland, L. E. Development of
NASA-TLX (task load index): Results of empirical and
theoretical research. In Human Mental Workload, P. A.
Hancock and N. Meshkati, Eds., vol. 52 of Advances in
Psychology. North-Holland, 1988, 139 – 183.

17. Ho, J., and Intille, S. S. Using context-aware computing
to reduce the perceived burden of interruptions from
mobile devices. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’05 (2005), 909–918.

18. Horvitz, E., and Apacible, J. Learning and reasoning
about interruption. In Proceedings of the 5th
International Conference on Multimodal Interfaces,
ICMI ’03 (2003), 20–27.

19. Horvitz, E., Koch, P., and Apacible, J. Busybody:
Creating and fielding personalized models of the cost of
interruption. In Proceedings of the 2004 ACM
Conference on Computer Supported Cooperative Work,
CSCW ’04 (2004), 507–510.

20. Hudson, S., Fogarty, J., Atkeson, C., Avrahami, D.,
Forlizzi, J., Kiesler, S., Lee, J., and Yang, J. Predicting
human interruptibility with sensors: A wizard of oz
feasibility study. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’03 (2003), 257–264.

https://developer.android.com/intl/ja/guide/topics/ui/accessibility/index.html
https://developer.android.com/intl/ja/guide/topics/ui/accessibility/index.html
https://developer.android.com/intl/ja/training/location/index.html
https://developer.android.com/intl/ja/training/location/index.html
http://www.google.com/think/research-studies/the-new-multi-screen-world-study.html
http://www.google.com/think/research-studies/the-new-multi-screen-world-study.html

21. Iqbal, S. T., and Bailey, B. P. Investigating the
effectiveness of mental workload as a predictor of
opportune moments for interruption. In CHI ’05
Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’05 (2005), 1489–1492.

22. Iqbal, S. T., and Bailey, B. P. Leveraging characteristics
of task structure to predict the cost of interruption. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’06 (2006),
741–750.

23. Iqbal, S. T., and Bailey, B. P. Understanding and
developing models for detecting and differentiating
breakpoints during interactive tasks. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’07 (2007), 697–706.

24. Iqbal, S. T., and Bailey, B. P. Oasis: A framework for
linking notification delivery to the perceptual structure
of goal-directed tasks. ACM Transactions on
Computer-Human Interaction 17, 4 (Dec. 2010),
15:1–15:28.

25. Iqbal, S. T., and Horvitz, E. Notifications and awareness:
A field study of alert usage and preferences. In
Proceedings of the 2010 ACM Conference on Computer
Supported Cooperative Work, CSCW ’10 (2010), 27–30.

26. Ishimaru, S., Kunze, K., Kise, K., Weppner, J., Dengel,
A., Lukowicz, P., and Bulling, A. In the blink of an eye:
Combining head motion and eye blink frequency for
activity recognition with google glass. In Proceedings of
the 5th Augmented Human International Conference
(2014), 15:1–15:4.

27. JINS Co., ltd. JINS MEME.
https://www.jins-jp.com/jinsmeme/en/, 2014.

28. Kahneman, D. Attention and effort. Prentice-Hall, Inc.,
1973.

29. Kreifeldt, J. G., and McCarthy, M. E. Interruption as a
test of the user-computer interface. In JPL Proceeding of
the 17 th Annual Conference on Manual Control (1981),
655–667.

30. Machine Learning Group at the University of Waikato.
Weka 3: Data mining software in java.
http://www.cs.waikato.ac.nz/ml/weka/.

31. Müller, H., Pielot, M., and de Oliveira, R. Towards
ambient notifications. Peripheral Interaction:
Embedding HCI in Everyday Life (2013), 21.

32. Newtson, D., and Engquist, G. The perceptual
organization of ongoing behavior. Journal of
Experimental Social Psychology 12, 5 (1976), 436–450.

33. O’Conaill, B., and Frohlich, D. Timespace in the
workplace: Dealing with interruptions. In Conference
Companion on Human Factors in Computing Systems,
CHI ’95 (1995), 262–263.

34. Okoshi, T., Lu, Y., Vig, C., Lee, Y., Balan, R. K., and
Misra, A. Queuevadis: Queuing analytics using
smartphones. In Proceedings of the 14th International
Conference on Information Processing in Sensor
Networks, IPSN ’15 (2015), 214–225.

35. Okoshi, T., Ramos, J., Nozaki, H., Nakazawa, J., Dey,
A. K., and Tokuda, H. Attelia: Reducing user’s cognitive
load due to interruptive notifications on smart phones. In
Pervasive Computing and Communications (PerCom),
2015 IEEE International Conference on (March 2015),
96–104.

36. Pejovic, V., and Musolesi, M. InterruptMe : Designing
Intelligent Prompting Mechanisms for Pervasive
Applications. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’14 (2014), 395–906.

37. salesforce.com. The 2014 mobile behavior report.
http://www.exacttarget.com/
2014-mobile-behavior-report.

38. Simon, H. A. Designing organizations for an
information-rich world. Computers, communication, and
the public interest 37 (1971), 40–41.

39. Smith, J., and Dulay, N. Ringlearn: Long-term
mitigation of disruptive smartphone interruptions. In
Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2014 IEEE International
Conference on (March 2014), 27–35.

40. Sony Mobile Communications Inc. SmartWatch 3
SWR50. http://www.sonymobile.com/global-en/
products/smartwear/smartwatch-3-swr50/, 2014.

41. Speier, C., Valacich, J. S., and Vessey, I. The influence
of task interruption on individual decision making: An
information overload perspective. Decision Sciences 30,
2 (1999), 337–360.

42. Su, N. M., and Mark, G. Communication chains and
multitasking. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’08
(2008), 83–92.

43. ter Hofte, G. H. H. Xensible interruptions from your
mobile phone. In Proceedings of the 9th International
Conference on Human Computer Interaction with
Mobile Devices and Services, MobileHCI ’07 (2007),
178–181.

44. Weiser, M., and Brown, J. S. The coming age of calm
technology. In Beyond calculation. Springer, 1997,
75–85.

45. Zijlstra, F. R., Roe, R. A., Leonora, A. B., and Krediet, I.
Temporal factors in mental work: Effects of interrupted
activities. Journal of Occupational and Organizational
Psychology 72, 2 (1999), 163–185.

https://www.jins-jp.com/jinsmeme/en/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.exacttarget.com/2014-mobile-behavior-report
http://www.exacttarget.com/2014-mobile-behavior-report
http://www.sonymobile.com/global-en/products/smartwear/smartwatch-3-swr50/
http://www.sonymobile.com/global-en/products/smartwear/smartwatch-3-swr50/

	1.Introduction
	Interruption Overload
	Approaches for Mitigating the Cost of Notifications

	Identifying Interruptible Moments
	Detecting Interruptibility in Mobile Environments
	Attention with Multiple Devices

	Principles for Detecting Breakpoints
	Attelia I
	Design of Attelia II
	``Breakpoint'' as a Temporal Target for Interruption
	User Interaction-based Breakpoint
	Physical Activity-based Breakpoint

	Mobile Sensing to Real-Time Breakpoint Detection

	Attelia II System Architecture
	UI-based Breakpoint Detection
	Physical Activity-based Breakpoint Detection
	Generic Android Platform
	Android Wear Platform

	Inter-Device Communication
	Combining Breakpoint Detection

	Evaluation
	Participants
	Overview of the Experiment Procedure
	Experimental Setup
	Combinational Breakpoint Detection Model
	Interruptive Notifications
	Measurement

	Collected Data
	Result: Value of Physical Activity-based Breakpoint Detection
	Result: Attelia II on the Smart Watch
	Result: Inter-Device Combinational Models
	Phase 1: Choosing the Best Model
	Phase 2: The Power of the Best Model

	Discussion
	Conclusion
	REFERENCES

